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 WGS: millions of variants  pinpoint causal variants affecting traits of interest

 Key traits: biological efficiency, e.g. feed efficiency

 BovReg: catalogue of functionally active genomic features (GF) in cattle

 genomics (QTL), transcriptomics (eQTL), epigenomics (mQTL), chromatin 

accessibility (ATAC-seq/ChIP-seq)  “multi-omics” data

 Functional GF  SNP prioritization  Biology-driven genomic predictions

Biology-driven genomic predictions



Validation of biology-driven genomic predictions

using genomic features for dry matter intake

Aim of the study



Data available for genomic predictions

NLD CAN

Breed Holstein Beef crosses

Herds 6 14

Dependent variable DRP on DMI Pre-corrected DMI

n. animals DMI & geno
(training - validation)

~3k
(2.2k and 850)

~5.5k
(4k and 1.5k)

 forward-in-time validation (SE via bootstrapping)

 50k to imputed WGS (Beagle)  prioritize variants based on GF



Genomic features used

GF Traits / Tissues

QTL Meat quality, Growth, Milk production, Morphology, 
Fertility, Health, Feed efficiency, Methane 

eQTL

(Gene, Transcript, Splice)

Jejunum, Blood, Liver, Mammary Gland,
Adipose, Muscle, Milk, Rumen

ATAC-seq

From GC Moreira et al., EAAP #939



ATAC-seq
Adapted from
10xgenomics.com

Genome-wide mapping of chromatin 

accessibility  accessible DNA

Tagmentation

Amplification

Next Gen sequencing

Promotor regions
Enhancers

Regulatory elements

Active Inactive

Consensus peaks
across samples GC Moreira et al., EAAP #939



Selection of genomic features

Clumping

Select GF group
(across traits/tissues)

Exclude variants in 50K &
not in within-country WGS

GF mapped to 1000G for all traits/tissues
position/intervals & p-value 

Variants list

SNPs as GF layer for GP

Extract bi-allelic variants
from within-country WGS 

GF variants overlapping with 1000G

vcftools/Plink

Plink



• NextGP.jl 1

• Base 50K: SNPBLUP (BayesC0) common variance across SNPs

• Additional GF layer: SNPBLUP or Bayesian (2 mixture model – no advantage)

• QTL, eQTL, ATAC  Multi-GF  overlapping GF 

Scenarios and software

Scenario NLD CAN

50K 48K 46K
50K + QTL 48K +   5,416 46K +   4,222

50K + eQTL 48K + 12,401 46K + 11,884
50K + (QTL, eQTL, ATAC) 48K + 17,796 46K + 16,089

1 https://github.com/datasciencetoolkit/NextGP.jl

https://github.com/datasciencetoolkit/NextGP.jl


Overlapping genomic features

SNP 1

SNP 2

SNP 3

SNP ..

SNP n

Annot.
1

Multi-GF 
layer of 
variants

a

Annot.
3

Annot.
2



Overlapping genomic features

QTL eQTL ATAC Variants %

1 1 0 5 0
1 1 1 16 0
1 0 0 2,576 14
1 0 1 2,819 16
0 1 0 5,051 28
0 1 1 7,329 41

17,796 100

BayesRCπ (2 classes)

Mollandin et al. 2022, BMC bioinformatics



Results – NLD: prediction accuracy

• SE: ±0.03

• No impact on dispersion (slope = 0.68 for 50k)
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• SE between ±0.02 and ±0.03

• Similar pattern for dispersion (slope = 0.56 for 50k)
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Results – CAN: prediction accuracy
+24%+12% -14% 0% +27%

50K QTL 50K + QTL eQTL 50K + eQTL 50K + 
Multi GF



 Inclusion of Genomic Features could increase genomic prediction 

accuracies for Dry Matter Intake

 Results may vary across breeds/datasets  find causal variants (complex traits)

 No advantage using (2 mixture) Bayesian approach over SNPBLUP for GF

Next steps

 focus trait/tissues-specific variants, more detailed annotation modelling 

(BayesLV), across-/multi-breed NLD-CAN

Conclusions and next steps
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Take-home messages

• Inclusion of Genomic Features could increase genomic prediction 

accuracies for Dry Matter Intake

• Results vary across breeds/datasets

• No advantage using Bayesian (2 mix model) over SNPBLUP for GF
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