## Biology-driven genomic predictions for dry matter intake within and across breeds using WGS data

**Renzo Bonifazi**, M Heidaritabar, AC Bouwman, LD Barlow, L Chen, P Stothard, J Basarab, C Li, G Plastow, the BovReg consortium, B Gredler-Grandl













# Biology-driven genomic predictions

- WGS: millions of variants → pinpoint **causal variants** affecting traits of interest
- Key traits: biological efficiency, e.g. feed efficiency
- BovReg: catalogue of functionally active genomic features (GF) in cattle
- genomics (QTL), transcriptomics (eQTL), epigenomics (mQTL), chromatin accessibility (ATAC-seq/ChIP-seq) → "multi-omics" data
- Functional GF → SNP prioritization → Biology-driven genomic predictions



#### Aim of the study

#### Validation of **biology-driven genomic predictions**

#### using **genomic features** for **dry matter intake**



## Data available for genomic predictions

|                                                  | NLD                   | CAN 🌞                  |
|--------------------------------------------------|-----------------------|------------------------|
| Breed                                            | Holstein              | Beef crosses           |
| Herds                                            | 6                     | 14                     |
| Dependent variable                               | DRP on DMI            | Pre-corrected DMI      |
| n. animals DMI & geno<br>(training - validation) | ~3k<br>(2.2k and 850) | ~5.5k<br>(4k and 1.5k) |

forward-in-time validation (SE via bootstrapping)

■ 50k to imputed WGS (Beagle) → prioritize variants based on GF



#### Genomic features used

|      | GF                                              | Traits / Tissues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | QTL                                             | Meat quality, Growth, Milk production, Morphology,<br>Fertility, Health, Feed efficiency, Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | eQTL                                            | (Gene, Transcript, Splice)<br>Jejunum, Blood, Liver, Mammary Gland,<br>Adipose, Muscle, Milk, Rumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| From | <b>ATAC-seq</b><br>GC Moreira et al., EAAP #939 | Lymph node<br>Lymph node<br>Lymph node<br>Lymph node<br>Liver<br>Heart<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Skeletal muscle<br>Subcutaneos fat<br>Subcutaneos fat<br>Spleen<br>Cerebellum<br>Skeletal muscle<br>Subcutaneos fat<br>Spleen<br>Corebellum<br>Cerebellum<br>Cerebellum<br>Skeletal muscle<br>Subcutaneos fat<br>Spleen<br>Corebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Spleen<br>Corebellum<br>Cerebellum<br>Cerebellum<br>Spleen<br>Corebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebrum cortex<br>Spleen<br>Corebellum<br>Corebellum<br>Cerebellum<br>Cerebellum<br>Cerebrum cortex<br>Spleen<br>Corebellum<br>Corebellum<br>Corebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebellum<br>Cerebrum cortex<br>Spleen<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Cerebellum<br>Cerebellum<br>Cerebrum cortex<br>Spleen<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellum<br>Corebellu |  |  |  |



### Selection of genomic features



### Scenarios and software

| Scenario                | NLD          | CAN 🔶        |
|-------------------------|--------------|--------------|
| 50K                     | 48K          | 46K          |
| 50K + <b>QTL</b>        | 48K + 5,416  | 46K + 4,222  |
| 50K + <b>eQTL</b>       | 48K + 12,401 | 46K + 11,884 |
| 50K + (QTL, eQTL, ATAC) | 48K + 17,796 | 46K + 16,089 |

- NextGP.jl<sup>1</sup>
- Base 50K: SNPBLUP (BayesC<sub>0</sub>) common variance across SNPs
- Additional GF layer: SNPBLUP or Bayesian (2 mixture model no advantage)
- QTL, eQTL, ATAC  $\rightarrow$  Multi-GF  $\rightarrow$  overlapping GF



# **Overlapping genomic features**





# **Overlapping genomic features**



BayesRCπ (2 classes)



Mollandin et al. 2022, BMC bioinformatics



• SE: ±0.03



No impact on dispersion (slope = 0.68 for 50k)



• SE between  $\pm 0.02$  and  $\pm 0.03$ 



Similar pattern for dispersion (slope = 0.56 for 50k)

## Conclusions and next steps

Inclusion of Genomic Features could increase genomic prediction

#### accuracies for Dry Matter Intake

- Results may vary across breeds/datasets  $\rightarrow$  find causal variants (complex traits)
- No advantage using (2 mixture) Bayesian approach over SNPBLUP for GF

#### **Next steps**

focus trait/tissues-specific variants, more detailed annotation modelling

(BayesLV), across-/multi-breed NLD-CAN



### Acknowledgments

Dr Emre Karaman and Dr Luc Janss

Dr Gabriel Costa M Moreira

The BovReg consortium







This work is carried out within the BovReg project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815668.



Disclaimer: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

















THROUGH GENOMIC AND EDIGENOMIC APPROACHES







# Thanks for your attention





Disclaimer: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.



Take-home messages



- Inclusion of Genomic Features could increase genomic prediction accuracies for Dry Matter Intake
- Results vary across breeds/datasets
- No advantage using Bayesian (2 mix model) over SNPBLUP for GF



Disclaimer: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.