

<u>Gabriel Costa Monteiro Moreira</u>, Lijing Tang, Sébastien Dupont, Meenu Bhati, Hubert Pausch, Doreen Becker, Mazdak Salavati, Richard Clark, Emily L. Clark, Graham Plastow, Christa Kühn and Carole Charlier on behalf of the BovReg consortium

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815668

Disclaimer: the sole responsibility of this presentation lies with the authors. The Research Executive Agency is not responsible for any use that may be made of the information contained therein.

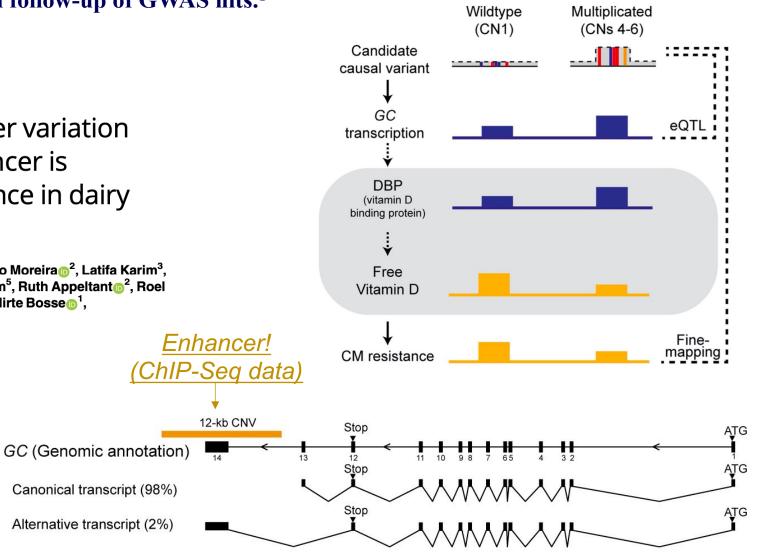
- BovReg consortium brings together scientists from twenty leading laboratories from different countries (EU, Switzerland, international organizations, Canada and Australia)
- ➤ Aims to improve our understanding of the cattle genome; also provide a comprehensive map of functionally active genomic features in cattle
- Critical for biological discovery and in linking genotype to phenotype; key knowledge for biology-driven genomic prediction needed by scientific and industry livestock communities.

Research Institute OSME OUniversity/Higher education ON profit OPublic Administration

@BovReg

BovReg project

PLOS GENETICS


RESEARCH ARTICLE

og10(p)

A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle

Young-Lim Lee^{1*}, Haruko Takeda², Gabriel Costa Monteiro Moreira², Latifa Karim³, Erik Mullaart⁴, Wouter Coppieters^{2,3}, The GplusE consortium⁵, Ruth Appeltant², Roel F. Veerkamp¹, Martien A. M. Groenen¹, Michel Georges², Mirte Bosse¹, Tom Druet², Aniek C. Bouwman¹, Carole Charlier²

SLC4A4 GC NPFFR2 ADAMTS3

¹Georges, M., Charlier, C. & Hayes, B. Harnessing genomic information for livestock ³ improvement. *Nat Rev Genet* **20**, 135–156 (2019). https://doi.org/10.1038/s41576-018-0082-2

> Recent efforts from the FAANG consortium have contributed to the functional annotation of the bovine genome but, with a limited number of tissues, individuals and populations analyzed

RESEARCH ARTICLE

Zhang et al. BMC Biology (2022) 20:79

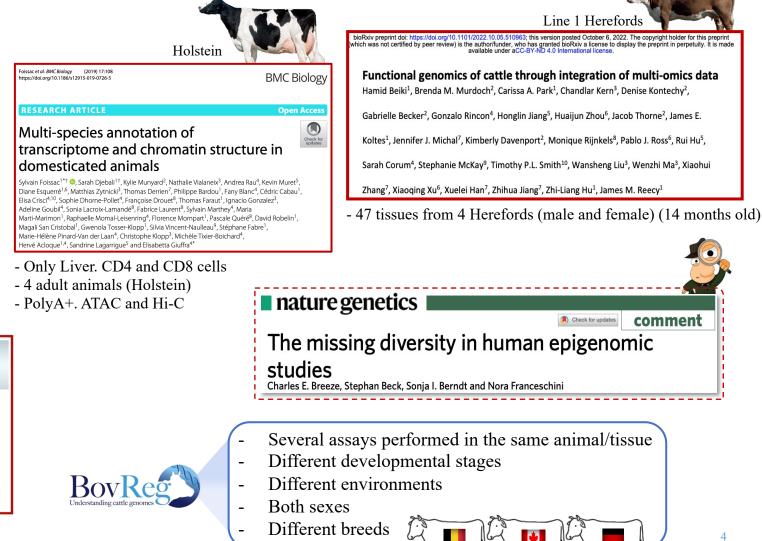
https://doi.org/10.1186/s12915-022-01269-4

Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle

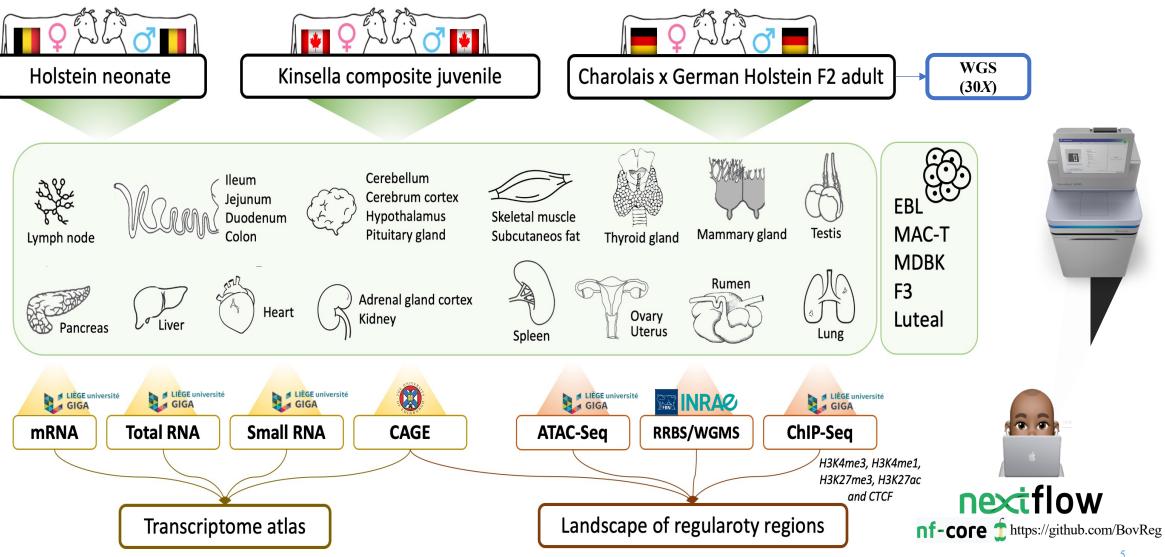
Tianliu Zhang^{1†}, Tianzhen Wang^{1†}, Qunhao Niu¹, Lei Xu¹, Yan Chen¹, Xue Gao¹, Huijiang Gao¹, Lupei Zhang¹, George E. Liu², Junya Li^{1*} and Lingyang Xu^{1*}

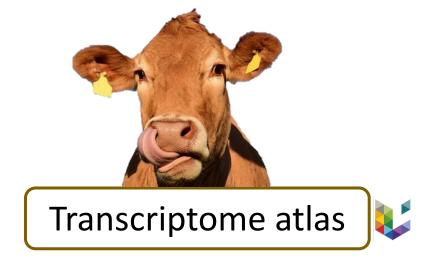
- 3 animals; same age
- 51 tissue types
- Only PolyA+ data

Open Access

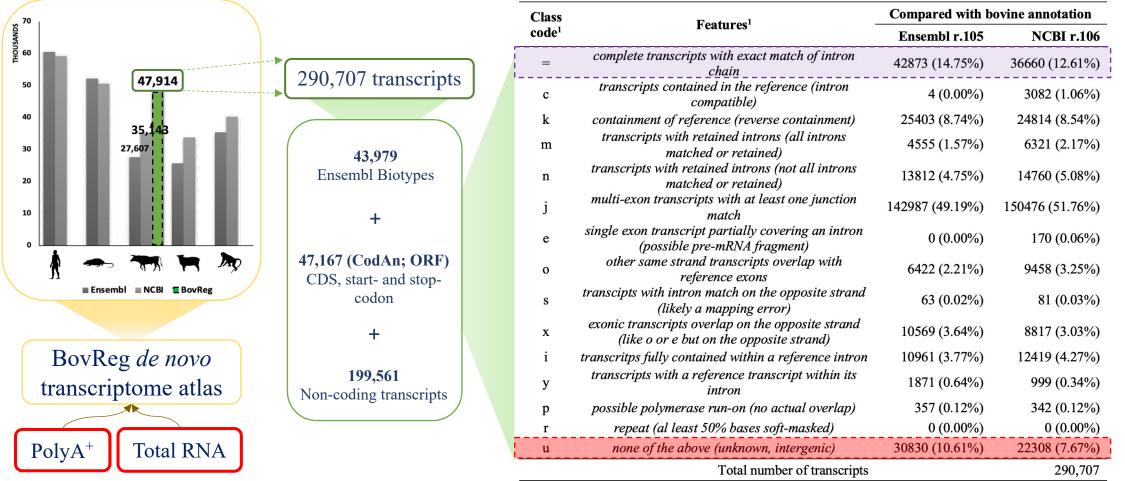

Line 1 Herefords

nature COMMUNICATIONS

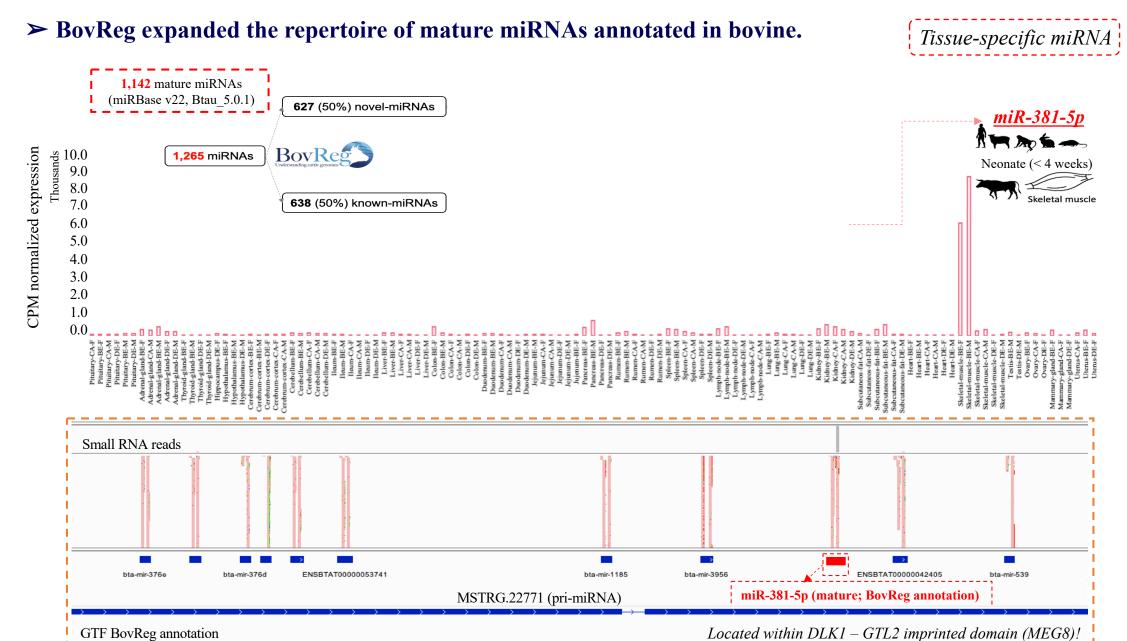

Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research


Colin Kern¹, Ying Wang¹, Xiaoqin Xu¹, Zhangyuan Pan¹, Michelle Halstead¹, Ganrea Chanthavixay¹, Perot Saelao 3, Susan Waters¹, Ruidong Xiang^{2,3}, Amanda Chamberlain 3, Ian Korf⁴, Mary E. Delang 1, Hans H. Cheng⁵, Juan F. Medrano¹, Alison L. Van Eenennaam¹, Chris K. Tuggle⁶, Catherine Ernst⁷, Paul Flicek ⁸, Gerald Ouon ⁹, Pablo Ross ¹[™] & Huaijun Zhou ¹[™]

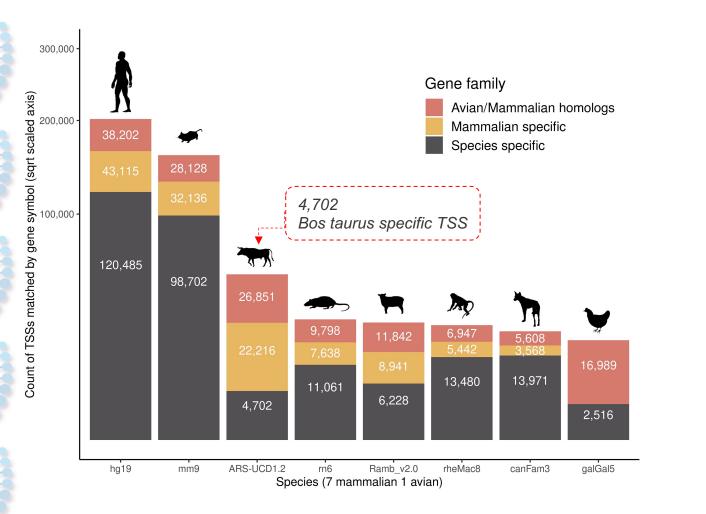
- 8 tissues from 2 Herefords male cattle (14 months old)



➤ BovReg utilizes a diverse catalogue of tissues for functional annotation.

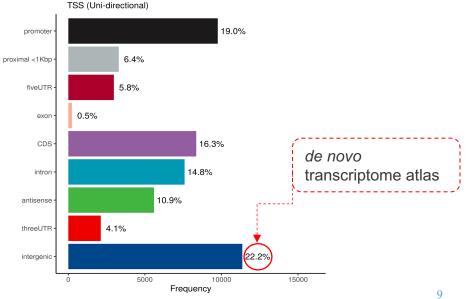


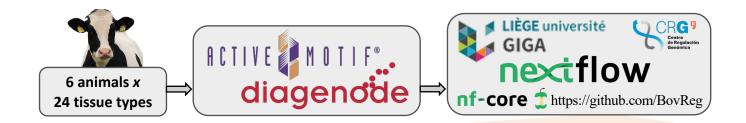
- **>** BovReg expanded the catalog of bovine non-coding RNAs by including non-polyadenylated transcripts.
- ➤ 48k genes models including ≥15k potentially novel transcripts!

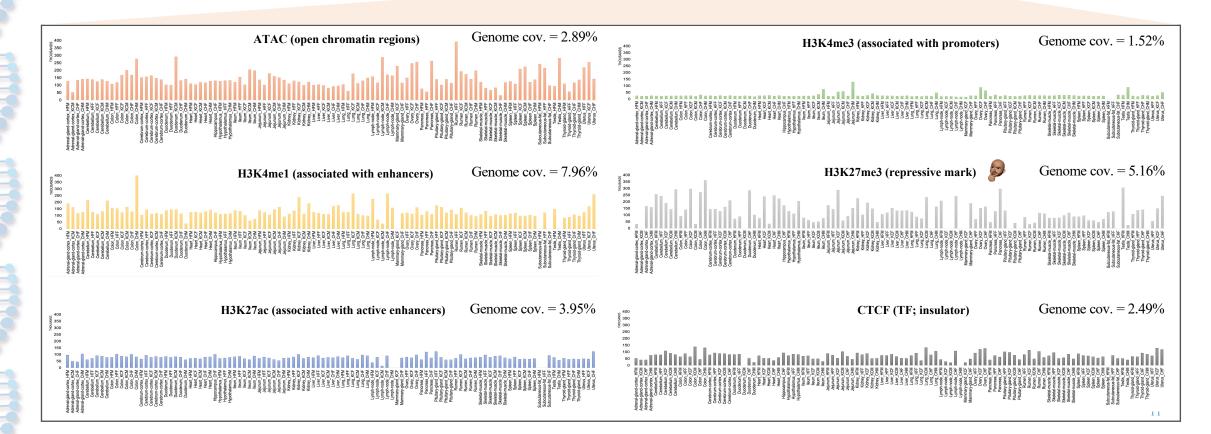

¹ Transcript classification code from gffcompare v.0.12.2¹⁰.

8

➤ 51,295 transcription start sites (TSS)

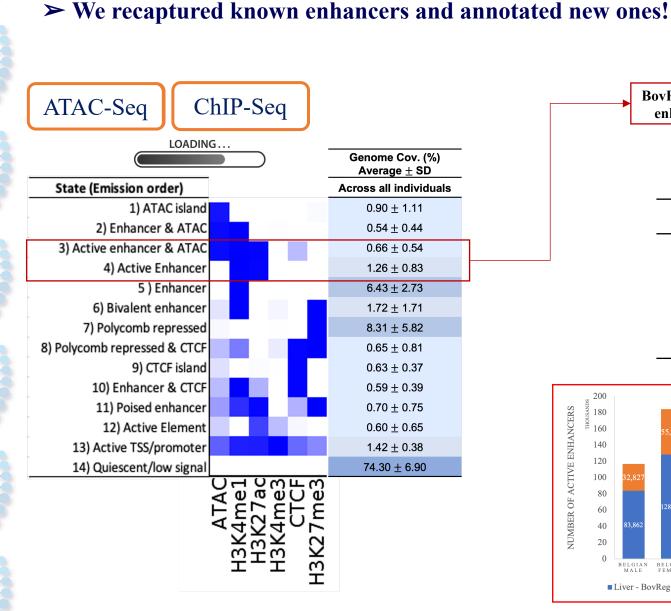

> 2,328 TSS-Enhancer regions shared across the three populations


Improving the annotation of the cattle genome by annotating transcription start sites in a diverse set of tissues and populations using Cap Analysis Gene **Expression sequencing**


Mazdak Salavati 📵, ^{1,*} Richard Clark,² Doreen Becker,³ Christa Kühn,^{3,4} Graham Plastow,⁵ Sébastien Dupont,⁶ Gabriel Costa Monteiro Moreira,⁶ Carole Charlier,^{6,7} Emily Louise Clark,¹on behalf of the BovReg consortium ¹The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK ²Edinburgh Clinical Research Facility, Genetics Core, University of Edinburgh, Edinburgh EH4 2XU, UK ³Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany ⁴Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock 18059, Germany ⁵Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton T6G 2H1, Canada ⁶Unit of Animal Genomics, GIGA Institute, University of Liège, Liège 4000, Belgium ⁷Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium *Corresponding author: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK. Email: Mazdak Salavati@roslin.ed.ac.uk ¹Present address: Dairy Research and Innovation Centre, Scotland's Rural College (SRUC), The Barony Campus, Dumfries DG1 3NE, UK

> We identified thousands of peaks for the different marks in our catalogue of tissues!



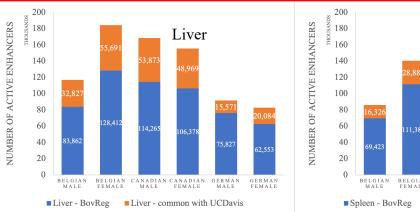


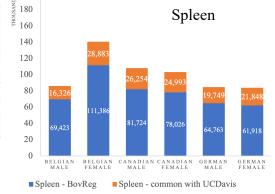
> Around 25% of the genome was covered by different chromatin states (except quiescent)

ATAC-Seq C	hIP-Seq	
LOADING		Genome Cov. (%) Average \pm SD
State (Emission order)		Across all individuals
1) ATAC island		0.90 ± 1.11
2) Enhancer & ATAC		0.54 ± 0.44
Active enhancer & ATAC		0.66 ± 0.54
4) Active Enhancer		1.26 <u>+</u> 0.83
5) Enhancer		6.43 <u>+</u> 2.73
6) Bivalent enhancer		1.72 ± 1.71
Polycomb repressed		8.31 ± 5.82
8) Polycomb repressed & CTCF		0.65 ± 0.81
9) CTCF island		0.63 ± 0.37
10) Enhancer & CTCF		0.59 ± 0.39
11) Poised enhancer		0.70 <u>+</u> 0.75
12) Active Element		0.60 ± 0.65
13) Active TSS/promoter		1.42 ± 0.38
14) Quiescent/low signal		74.30 ± 6.90
	ATAC H3K4me1 H3K27ac H3K27ac H3K4me3 CTCF H3K27me3	

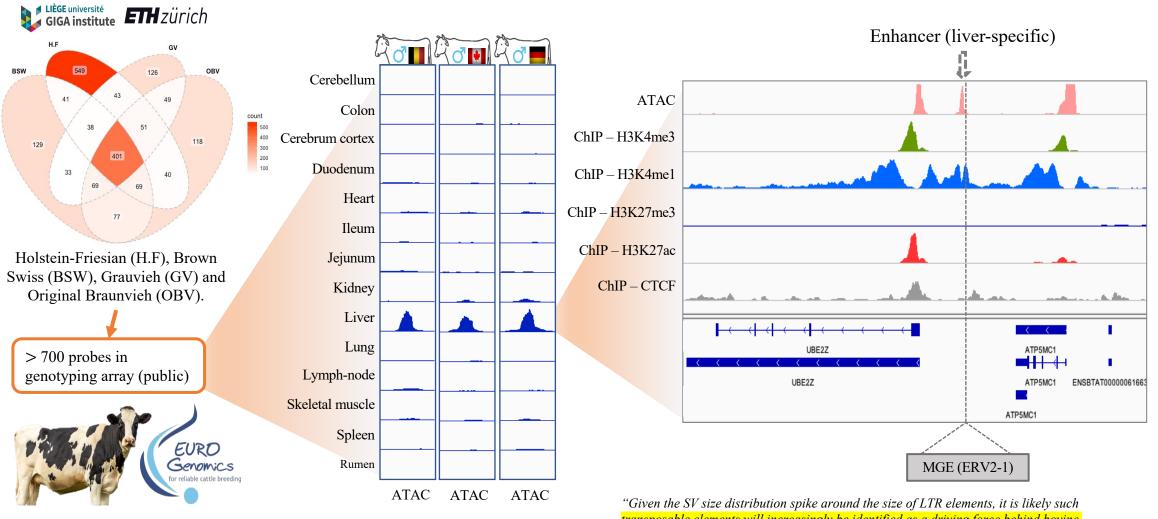
Active enhancer (liver specific) only detected in neonate animals!!

BovReg active	110
enhancers	VS


ature cations


Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research

Colin Kern¹, Ying Wang¹, Xiaoqin Xu ⁰, Zhangyuan Pan¹, Michelle Halstead ⁰, Ganrea Chanthavixay¹, Perot Saelao ⁰, Susan Waters¹, Ruidong Xiang²³, Amanda Chamberlain ⁰, Jian Korf⁴, Mary E. Delany ⁰, ¹, Hans H. Cheng², Juan F. Medrano ⁰, Alison L. Van Enennana ⁰, J. Chris K. Tuggle ⁰, Catherine Ernsta⁷, Paul Flicek ⁰, Gerald Quon ⁰, Pablo Ross ^{0,133} & Huaijun Zhou ^{0,135}


- 8 tissues from 2 Herefords male cattle (14 months old)

Tissues	Active enhancers (Kern et al., 2021)	Enhancers recaptured BovReg
Cerebellum	16,612	12,993 (78.21%)
Cortex	28,235	24,408 (86.45%)
Hypothalamus	27,796	17,277 (62.16%)
Liver	57,457	46,312 (80.60%)
Lung	49,861	38,537 (77.29%)
Muscle	28,023	19,442 (69.38%)
Spleen	29,707	24,520 (82.54%)

> Mobile genetic element co-localized with liver-specific regulatory elements!

transposable elements will increasingly be identified as a driving force behind bovine phenotypic diversity" - <u>Pangenome genotyped structural variation improves molecular</u> <u>phenotype mapping in cattle</u>; Leonard, Mapel & Pausch, bioRxiv 2023.

Genomic features

eQTL in different bovine tissues (liver, blood, jejunum, rumen, milk cells, muscle, adipose tissue and mammary gland)

Transcriptome map

- → 48k genes models including \geq 15k potentially novel transcripts
- → 1,265 (638 known and 627 novel) miRNAs
- ► 51,295 transcription start sites (TSS)
- →2,328 TSS-Enhancer regions shared across the three populations

Regulatory regions

- → 925,498 ATAC-Seq consensus peaks
- → 327,236 H3K4me3 consensus peaks
- → 396,828 H3K4me1 consensus peaks
- → 316,262 H3K27me3 consensus peaks
- → 454,530 H3K27ac consensus peaks
- → 643,198 CTCF consensus peaks

Variations

Mobile genetic elements (727 probes, EuroGenomics array)

WP7/Task7.2: Validating biology-driven genomic selection within and across small breeds (French, Nordic, Swiss, Canadian beef and dairy breeds)

BovReg Final Conference

University Foundation Room "Felicien Cattier" Bruxelles (virtual participation available)

14th (afternoon) 15th (full day) February 2024

Watch out our website <u>www.bovreg.eu</u> for further details to be announced soon!

LOADING...

Thank you for your attention!

www.bovreg.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815668 Disclaimer: the sole responsibility of this presentation lies with the authors. The Research Executive Agency is not responsible for any use that may be made of the information contained therein.