

INRAe

Sanchez et al. Genetics Selection Evolution (2023) 55:70 https://doi.org/10.1186/s12711-023-00848-5 **Genetics Selection Evolution**

RESEARCH ARTICLE

Open Access

Sequence-based GWAS meta-analyses for beef production traits

Marie-Pierre Sanchez^{1*}, Thierry Tribout¹, Naveen K. Kadri², Praveen K. Chitneedi³, Steffen Maak³, Chris Hozé^{1,4}, Mekki Boussaha¹, Pascal Croiseau¹, Romain Philippe⁵, Mirjam Spengeler⁶, Christa Kühn^{3,7,8}, Yining Wang⁹, Changxi Li^{9,10}, Graham Plastow¹⁰, Hubert Pausch² and Didier Boichard¹

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement 815668

WP4 – Integrative genotype-phenotype data analysis

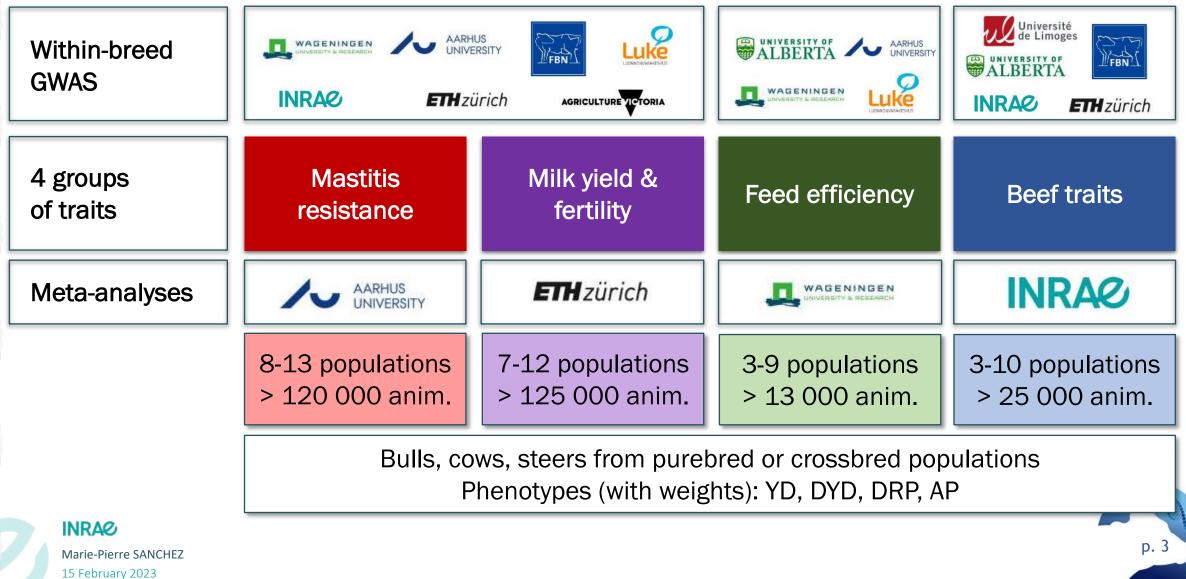
WP leader: Hubert PAUSCH (ETH, Switzerland) - 11 partners / 20 involved in BovReg

T4.1 – Hubert PAUSCH (ETH, Switzerland) GWAS and meta-analyses from whole-genome sequences (WGS) for biological efficiency, disease resistance and fertility traits

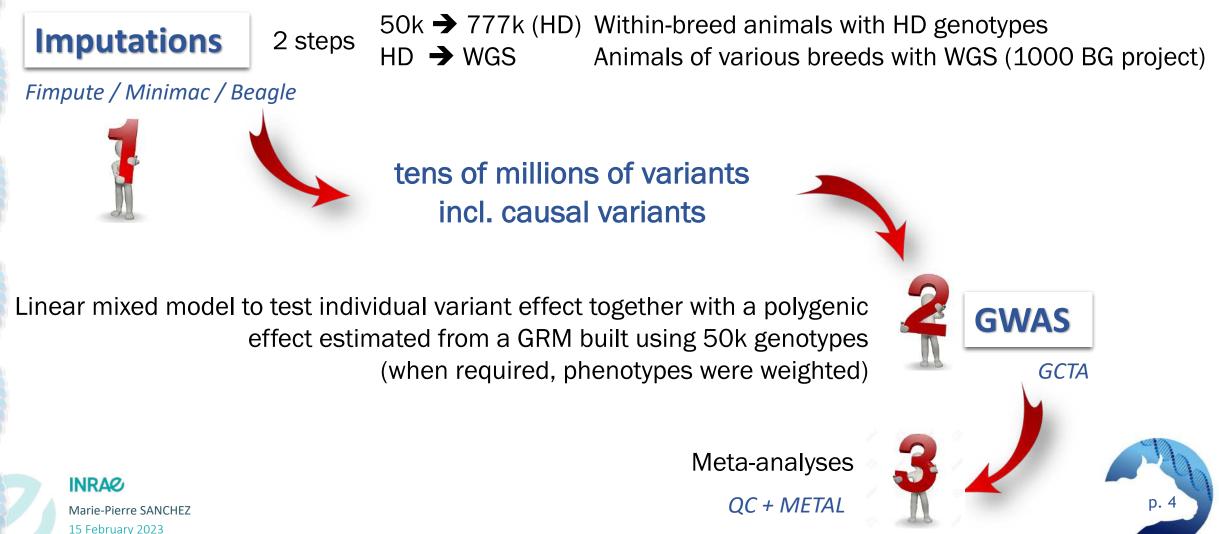
T4.2 – Carole CHARLIER (GIGA, Belgium) Phenotypic impact of mobile element integration

T4.3 – Christa KUHN (FBN, Germany) eQTLs and mQTLs analyses

T4.4 – Emily CLARK (UEDIN, UK) Tools to prioritize candidate causative variants


Marie-Pierre SANCHEZ 15 February 2023

INRA@


GWAS & meta-analyses

Within-breed GWAS & meta-analyses

All partners applied similar imputation and GWAS workflows before meta-analyses

« Beef » MA – populations

A large number of various populations

8 purebred populations from **France** (NOR, MON, CHA, LIM, BLA)

4 populations from **Swiss** breeds (BSW, OBR)

2 crossbred populations from **Germany** (HOL x CHA)

ETH zürich

1 composite line from **Canada** (ANG, CHA, beef)

Marie-Pierre SANCHEZ

« Beef » MA – traits analyzed

Grouping of traits in 16 MA

Table 4	Traits and	populations	included in	meta-anal	yses (MA)
---------	------------	-------------	-------------	-----------	-----------

wide G1 Growth BW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, FBN_calves) 3 fattening ADG G2 Growth W15 (FBN_bulls, W18 (INRAE_CLA_cows); ADG (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_L		BW W15 W18	MA	Group of traits	Trait ^a (populations ^b)		Number of populations	Number of animals			
fattening ADG GL Science ULIM_BLA ULIM_BLA GL Science GL Science <t< td=""><td></td><td></td><td>G1</td><td>Growth</td><td>BW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, FBN_calves</td><td>)</td><td>3</td><td>2720</td></t<>			G1	Growth	BW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, FBN_calves)	3	2720			
SS30 TB30 THGHS M1 Morphology MS30 (INRAE_CH_A_cows); MD (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); THIGHS 7 WITHER FS M2 Morphology MS30 (INRAE_CH_A_cows); MD (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); THIGHS 7 M3 Morphology MS30 (INRAE_CHA_cows); MD (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); FBN_cows) 6 CW M4 Morphology LL (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); FBN_cows) 6 CW M4 Morphology UL (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); FBN_cows) 5 CF M5 Morphology WT (INRAE_CHA_steers, INRAE-MON_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE-ULIM_ENA, INRAE-ULIM_ENA, INRAE-ULIM_ENA, INRAE-ULIM_CHA) 4 CC C2 Carcass CG (INRAE_CHA_steers, INRAE-MON_steers, INRAE_NOR_steers), INRAE VILM_CHA) 4 FS C3 Carcass CG (INRAE-CHA_steers, INRAE-ULIM_UAL, INRAE-ULIM_BLA, FBN_couls, FBN_cows) 5 CC C2 Carcass CG (INRAE_ULIM_CHA, INRAE-ULIM_UAL, INRAE-ULIM_BLA, FBN_cOWS) 5 CC C4 Carcass CG (INRAE_CHA_steers, INRAE, MON, steers, INRAE_NOR, steers); LMY (UAL); MY (UAL)	fattening		G2	Growth		L, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-	6	18,774			
TB30 INT Molphology INSULT_CLUCTON MALE CLUCTON MALE CLUTON MA		MS30	G3	Growth	WS (INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, F	BN_cows)	4	2636			
WITHER MS_MORPHORUGY MIDDALCINC, UNIVELOUND, UNIVELE, UNIVELOUND, UNIVELOUND, UNIVELOUND,			M1	Morphology		IA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); THIGHS	7	17,418			
CW MS Molphology EL (UAL, INNAL-OLIM_LIN, INNAL-OLIM_ELIN, INNAL-OLIM_BLA, FBN_buils, FBN_cows) 5 cis M4 Morphology WT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_buils, FBN_cows) 4 cis ALT C1 Carcass CW (INRAE-CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, FIRA_buils, FBN_cows) 4 rs C3 Carcass CY (INRAE-CHA_steers, INRAE-MON_steers, INRAE_NOR_steers, INRAE-ULIM_CHA) 4 rs C3 Carcass CY (INRAE-CHA_steers, INRAE-MON_steers, INRAE_NOR_steers, INRAE-ULIM_CHA) 4 rs C3 Carcass CY (INRAE-CHA_steers, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_buils, FBN_cows) 5 cY C4 Carcass CY (INRAE-CHA_steers, INRAE-MON_steers, INRAE-NOR_steers, INRAE-ULIM_CHA) 4 rsw C4 Carcass CY (INRAE-CHA_steers, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_buils, FBN_cows) 5 cY C4 Carcass CS (INRAE-CHA_steers, INRAE-ULIM_LIM, INRAE-		WITHER	M2	Morphology		30 (INRAE_CHA_cows); MD (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); WITHER					
CF M4 Morphology W1 (WHAE-ULM_CHA, INRAE-ULIM_LIM, INRAE-ULM_BLA, FBN_COWS) 5 cis ALT C1 Carcass CW (INRAE-ULM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); SS30 (INRAE_CHA_cows) 4 cis ALT C1 Carcass CW (INRAE-CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE_OLIM_CHA) 4 ccc C2 Carcass AS (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE-ULIM_CHA) 4 rs C3 Carcass CY (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 CY C4 Carcass CY (INRAE-CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 IFW C5 Carcass CY (INRAE-CHA_steers, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 Igh WS C6 Carcass CG (INRAE-CHA, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 igh WT C7 Carcass ALT (WAAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 igh WT C7 Carcass ALT (WAAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 igh			МЗ	Morphology	LL (UAL, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-U	L, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows)					
MT MS Morphology SD (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_LIA, ISS30 (INRAE_CHA_ccows) 4 ciss ALT C1 Carcass CW (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE_VOIM_CHA) 7 ccc C2 Carcass AS (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE-ULIM_CHA) 4 FS C3 Carcass CY (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 CY C4 Carcass CG (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers); LMY (UAL); MT (ETH_bulls); CC (INRAE- 10 IFW LL C5 Carcass CG (INRAE-ULIM_CHA, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 LL C5 Carcass FS (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 8 righ WS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 igh WT C7 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 KBA WS C6 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 CG AS C3 Carcass REA (UAL, FBN_bulls, FBN_cows) <			M4	Morphology	WT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIN	1_BLA, FBN_bulls, FBN_cows)	5	3695			
Sis ALT C1 Carcass CW (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, FBN_buils, FBN_cows, ETH_buils, UAL) 7 CC C2 Carcass AS (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE-ULIM_CHA) 4 FS C3 Carcass CY (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE_NOR_steers, INRAE_OULM_CHA) 4 FS C3 Carcass CY (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers); LMY (UAL); MT (ETH_buils); CC (INRAE- 10 IFW C5 Carcass CG (INRAE_CHA_steers, INRAE_OULM_ELA, INRAE-ULIM_BLA, FBN_buils, FBN_cows) 5 LL C5 Carcass FS (INRAE_OLIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_buils, FBN_cows) 5 NS C6 Carcass FS (INRAE_NOR_buils); FCU (INRAE-ULIM_CHA, INRAE-ULIM_ELA, FBN_buils, FBN_cows) 5 NS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_CHA, INRAE-ULIM_ELA, FBN_buils, FBN_cows) 5 NS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_CHA, INRAE-ULIM_BLA, FBN_buils, FBN_cows) 5 NS C6 Carcass It (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_buils, FBN_cows) 5 AS C8 Carcass REA (UAL, FBN_buils, FBN_c			M5	Morphology	SD (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM	_BLA); SS30 (INRAE_CHA_cows)	4	12,140			
CC C2 Carcass AS (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE-ULIM_CHA) 4 FS C3 Carcass CY (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 CY C4 Carcass CG (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers, INRAE_NOR_steers); LMY (UAL); MT (ETH_bulls); CC (INRAE- 10 10 IFW C5 Carcass FS (INRAE_NOR_bulls); FCU (INRAE-ULIM_CHA, INRAE-ULIM_BLA, FBN_cows) 8 ILL C5 Carcass FS (INRAE_NOR_bulls); FCU (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); CFS (FBN_bulls, BA 8 NS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_CHA, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 NS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 NS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 NS C6 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 NS C6 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 C3 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 3 C6 Carcass REA (UAL, FBN_bull	ris		C1	Carcass	CW (INRAE_CHA_steers, INRAE_MON_steers, INRAE_I	NOR_steers, FBN_bulls, FBN_cows, ETH_bulls, UAL)	7	19,989			
FS C3 Carcass CY (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BIA, FBN_buils, FBN_cows) 5 CY C4 Carcass CG (INRAE_CHA_steers, INRAE_MON_steers, INRAE_NOR_steers); LMY (UAL); MT (ETH_buils); CC (INRAE-10 IFW LL C5 Carcass FS (INRAE_NOR_buils); FCU (INRAE-ULIM_CHA, INRAE-ULIM_BIA, FBN_buils, FBN_cows) 8 gh MS C6 Carcass FS (INRAE_NOR_buils); FCU (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BIA); CFS (FBN_buils, 8 8 gh WT C7 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BIA, FBN_buils, FBN_cows) 5 gh WT C7 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BIA, FBN_buils, FBN_cows) 5 gh WT C7 Carcass REA (UAL, FBN_buils, FBN_cows) 5 MT C7 Carcass REA (UAL, FBN_buils, FBN_cows) 5 AS C6 Carcass REA (UAL, FBN_buils, FBN_cows) 5 AS C8 Carcass REA (UAL, FBN_buils, FBN_cows) 5 AS C8 Carcass REA (UAL, FBN_buils, FBN_cows) 5 AS C6 Carcass REA (UAL, FBN_buils, FB	15		C2	Carcass	AS (INRAE_CHA_steers, INRAE_MON_steers, INRAE_N	IOR_steers, INRAE-ULIM_CHA)	4	12,208			
CY C4 Carcass CG (INRAE_CHA_steers, INRAE_MON_steers), INRAE_NOR_steers); LMY (UAL); MT (ETH_bulls); CC (INRAE- 10 IFW LL C5 Carcass FS (INRAE_OLIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) gh KEA C6 Carcass FS (INRAE_NOR_bulls); FCU (INRAE-ULIM_CHA, INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_cows) 5 gh WS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 gh WT C7 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 gh WT C7 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 gh WT C7 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 GG AS C8 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 GG AS C8 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 GG AS C8 Carcass REA (UAL, FBN_bulls, FBN_cows) 3 GG AS C8 Carcass REA (UAL, FBN_bulls, FBN_cows) 3 IMT CW			C3	Carcass	CY (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM	_BLA, FBN_bulls, FBN_cows)	5	3694			
ILL C5 Carcass FS (INRAE_NOR_bulls); FCU (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA); CFS (FBN_bulls, 8 igh WS C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_cows) 5 igh WT C7 Carcass IFW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 AS C6 Carcass IFW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 ABT C7 Carcass IFW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 ABT CG C7 Carcass REA (UAL, FBN_bulls, FBN_cows) 3 MWY Into 5 traits / MA Into 5 traits / MA 2 methods: 2 methods: LMY Intrasound Into 5 traits / MA 2 methods: 2-score & fixed effects WD 2 to 5 partners / MA With METAL software (Willer et al., 2		СҮ	C4	Carcass		10	25,367				
ws C6 Carcass ALT (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 wt C7 Carcass IFW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 As C6 Carcass REA (UAL, FBN_bulls, FBN_cows) 5 CG Carcass REA (UAL, FBN_bulls, FBN_cows) 5 ABT CW I to 5 traits / MA 2 methods: LMY I to 5 traits / MA 2 methods: 2-score & fixed effects with METAL software (Willer et al., 2) With METAL software (Willer et al., 2)		LL	C5	Carcass		E-ULIM_LIM, INRAE-ULIM_BLA); CFS (FBN_bulls,	8	14,622			
igh WT C7 Carcass IFW (INRAE-ULIM_CHA, INRAE-ULIM_LIM, INRAE-ULIM_BLA, FBN_bulls, FBN_cows) 5 AS CG Carcass REA (UAL, FBN_bulls, FBN_cows) 3 ABT CW I to 5 traits / MA 2 methods: LMY I to 10 populations / MA 2 methods: z-score & fixed effects VILTrasound V 2 to 5 partners / MA with METAL software (Willer et al., 2			C6	Carcass		1_BLA, FBN_bulls, FBN_cows)	5	3692			
AS C8 Carcass REA (UAL, FBN_bulls, FBN_cows) 3 ABT CW I to 5 traits / MA I to 5 traits / MA 2 methods: LMY Image: Second Seco	gh		C7	Carcass			5	3686			
CG ABT CW ☑ 1 to 5 traits / MA LMY ☑ 3 to 10 populations / MA FC6 ☑ 3 to 10 populations / MA FC0 ☑ 2 to 5 partners / MA MD ☑ 2 to 5 partners / MA			C8	Carcass		T 15 888 12 8890 nd	3	4453			
	ıltrasound	ABT CW LMY FC6 FCU	V	3 to 10	populations / MA	z-score & fixed effects	aretal (2010)			
sp 🛛 🗹 2600 to 25,000 animals / MA			$\mathbf{\nabla}$	2600 to	25,000 animals / MA			p. 6			

	1 Growth	Birth Weight	BW
	2 Growth	weight at month 15	W15
	3 Growth	weight at 18 months	W18
	4 Growth	weight at 24 months	W24
	5 Growth	average daily gain	ADG
	6 Growth	average daily gain during fattening	ADG
	7 Morphology	muscularity score	MS3
	8 Morphology	skeletal score	SS30
	9 Morphology	thickness of bones	TB30
Alerre	10 Morphology	Thighs	THIC
A large	11 Morphology	Wither	WITI
number and	12 Morphology	Fat score	FS
	13 Carcass	carcass weight	CW
a large	14 Carcass	fat coverage	CF
diversity of	15 Carcass	meatiness	MT
-	16 Carcass	Area of longissimus thoracis	ALT
traits	17 Carcass	Carcass conformation	CC
	18 Carcass	carcass fat score	FS
Growth (6)	19 Carcass	carcass yield	CY
Morphology (6)	20 Carcass	Internal fat weight	IFW
Carcass (21)	21 Carcass	length of the leg	LL
Calcass (21)	22 Carcass	Rib Eye Area	REA
	23 Carcass	Weight at slaughter	WS
	24 Carcass	Maximum width of the thigh	WT
	25 Carcass	age at slaughter	AS
	26 Carcass	carcass grade	CG
	27 Carcass	average backfat thickness	ABT
	28 Carcass	hot carcass weight	CW
	29 Carcass	lean meat yield	LMY
	30 Carcass	fat content of 6th rib	FC6
	31 Carcass	fat content measured by ultrasound	FCU
	32 Carcass	muscular development	MD
	33 Carcass	skeletal development	SD

15 February 2023

Comparison of GWAS & meta-GWAS results

QTL detected

in 15 of the 16 MA

• in 1 to 5 GWAS

2 QTL detected in GWAS and not in MA

9 QTL detected in MA and not in GWAS

Table 5 Features of QTL identified in within-population GWAS and meta-analyses (MA)

MAª	Within-po	pulation GWAS		Fixed-effects MA			
	Number of QTL total	Number of QTL per GWAS ^b	Number of variants (CI)	Size in kb (Cl)	Number of QTL	Number of variants (CI)	Size in kb (Cl)
G1 (3)	8	8	135 (12–381)	1650 (415–2448)	6	124 (44–223)	1736 (569–3594)
G2 (6)	8	4,4	216 (22–707)	1823 (629–2903)	8	50 (14-100)	1310 (104–2828)
G3 (4)	6	4,1,1	215 (31–564)	2441 (1183-3922)	8	114 (5-419)	1696 (129–3426)
M1 (7)	15	1,6,2,6	153 (3–566)	1438 (52–2863)	8	81 (2-429)	1070 (109–2863)
M2 (7)	11	1,6,2,2	170 (3–566)	1526 (109–3101)	8	60 (2-411)	882 (49-2863)
M3 (6)	12	2,8,1,1	271 (17–793)	1937 (495–3823)	9	102 (4-421)	1519 (274–3038)
M4 (5)	8	1,3,3,1	333 (32–800)	2357 (1417-3578)	6	161 (5-409)	1701 (559–2386)
M5 (4)	12	1,10,1	182 (18–507)	1871 (416–3511)	11	125 (2–347)	1611 (146–2997)
C1 (7)	3	3	66 (34-126)	469 (174-823)	4	35 (7–87)	928 (78–1443)
C3 (5)	15	7,2,4,2	290 (4–902)	1840 (59–3821)	6	237 (71-850)	2392 (721-3614)
C4 (10)	11	3,1,3,3,1	207 (3–570)	1668 (680-2520)	8	33 (3–161)	1272 (24–2520)
C5 (8)	5	3,1,1	128 (1-403)	1547 (0-2664)	6	42 (1-90)	1025 (0–2623)
C6 (5)	8	3,2,3	176 (9–766)	1869 (1–3143)	5	266 (49-474)	1975 (935–2577)
C7 (5)	1	1	533	2205	1	95	2857
C8 (3)	6	4,1,1	195 (17–445)	2515 (989–3892)	7	66 (3–232)	1750 (98–3982)
Mean	8.6		218	1810	6.7	106	1582

CI confidence interval

Comparison of GWAS & meta-GWAS results

Table 5 Features of QTL identified in within-population GWAS and meta-analyses (MA)

	MAa	Within-po	pulation GWAS			Fixed-effe	cts MA	
QTL detected		Number of QTL total	Number of QTL per CWAS ^b	Number of variants (CI)	Size in kb (Cl)	Number of QTL	Number of variants (CI)	Size in kb (Cl)
•	G1 (3)	8	8	135 (12–381)	1650 (415-2448)	6	124 (44–223)	1736 (569-3594)
in 15 of the 16 MA	G2 (6)	8	4,4	216 (22-707)	1823 (629-2903)	8	50 (14-100)	1310 (104-2828)
in 1 to 5 GWAS	G3 (4)	6	4,1,1	215 (31–564)	2441 (1183–3922)	8	114 (5-419)	1696 (129–3426)
	M1 (7)	15	1,6,2,6	153 (3–566)	1438 (52–2863)	8	81 (2–429)	1070 (109–2863)
	M2 (7)	11	1,6,2,2	170 (3–566)	1526 (109-3101)	8	60 (2-411)	882 (49-2863)
2 QTL detected in GWAS	M3 (6)	12	2,8,1,1	271 (17–793)	1937 (495–3823)	9	102 (4-421)	1519 (274–3038)
and not in MA	M4 (5)	8	1,3,3,1	333 (32–800)	2357 (1417–3578)	6	161 (5-409)	1701 (559–2386)
	M5 (4)	12	1,10,1	182 (18–507)	1871 (416–3511)	11	125 (2–347)	1611 (146–2997)
	C1 (7)	3	3	66 (34–126)	469 (174-823)	4	35 (7–87)	928 (78–1443)
9 QTL detected in MA and	C3 (5)	15	7,2,4,2	290 (4–902)	1840 (59–3821)	6	237 (71–850)	2392 (721–3614)
C	C4 (10)	11	3,1,3,3,1	207 (3–570)	1668 (680–2520)	8	33 (3–161)	1272 (24–2520)
not in GWAS	C5 (8)	5	3,1,1	128 (1-403)	1547 (0–2664)	6	42 (1–90)	1025 (0–2623)
	C6 (5)	8	3,2,3	176 (9–766)	1869 (1–3143)	5	266 (49–474)	1975 (935–2577)
	C7 (5)	1	1	533	2205	1	95	2857
	C8 (3)	6	4,1,1	195 (17–445)	2515 (989–3892)	7	66 (3–232)	1750 (98–3982)
	Mean	8.6		218	1810	6.7	106	1582

CI confidence interval

INRA@

Marie-Pierre SANCHEZ 15 February 2023

Except in G1 and C3, the number of QTL detected in MA was higher than the number of QTL detected in each GWAS

Comparison of GWAS & meta-GWAS results

Table 5 Features of QTL identified in within-population GWAS and meta-analyses (MA)

MAª	Within-po	pulation GWAS			Fixed-eff	ects MA	
	Number of QTL total	Number of QTL per GWAS ^b	Number of variants (CI)	Size in kb (Cl)	Number of QTL	Number of variants (CI)	Size in kb (Cl)
G1 (3)	8	8	135 (12–381)	1650 (415–2448)	6	124 (44–223)	1736 (569–3594
G2 (6)	8	4,4	216 (22–707)	1823 (629–2903)	8	50 (14-100)	1310 (104–2828
G3 (4)	6	4,1,1	215 (31–564)	2441 (1183–3922)	8	114 (5-419)	1696 (129-3426
M1 (7)	15	1,6,2,6	153 (3–566)	1438 (52–2863)	8	81 (2-429)	1070 (109–2863
M2 (7)	11	1,6,2,2	170 (3–566)	1526 (109–3101)	8	60 (2-411)	882 (49–2863)
M3 (6)	12	2,8,1,1	271 (17–793)	1937 (495–3823)	9	102 (4-421)	1519 (274–3038
M4 (5)	8	1,3,3,1	333 (32–800)	2357 (1417–3578)	6	161 (5-409)	1701 (559–2386
M5 (4)	12	1,10,1	182 (18–507)	1871 (416–3511)	11	125 (2–347)	1611 (146–2997
C1 (7)	3	3	66 (34-126)	469 (174-823)	4	35 (7–87)	928 (78–1443)
C3 (5)	15	7,2,4,2	290 (4–902)	1840 (59–3821)	6	237 (71-850)	2392 (721-3614
C4 (10)	11	3,1,3,3,1	207 (3–570)	1668 (680–2520)	8	33 (3–161)	1272 (24–2520)
C5 (8)	5	3,1,1	128 (1-403)	1547 (0–2664)	6	42 (1–90)	1025 (0–2623)
C6 (5)	8	3,2,3	176 (9–766)	1869 (1–3143)	5	266 (49-474)	1975 (935–2577
C7 (5)	1	1	533	2205	1	95	2857
C8 (3)	6	4,1,1	195 (17–445)	2515 (989–3892)	7	66 (3-232)	1750 (98–3982)
Mean	8.6		218	1810	6.7	106	1582

QTL detected • in 15 of the 16 MA

in 1 to 5 GWAS

2 QTL detected in GWAS and not in MA

9 QTL detected in MA and not in GWAS

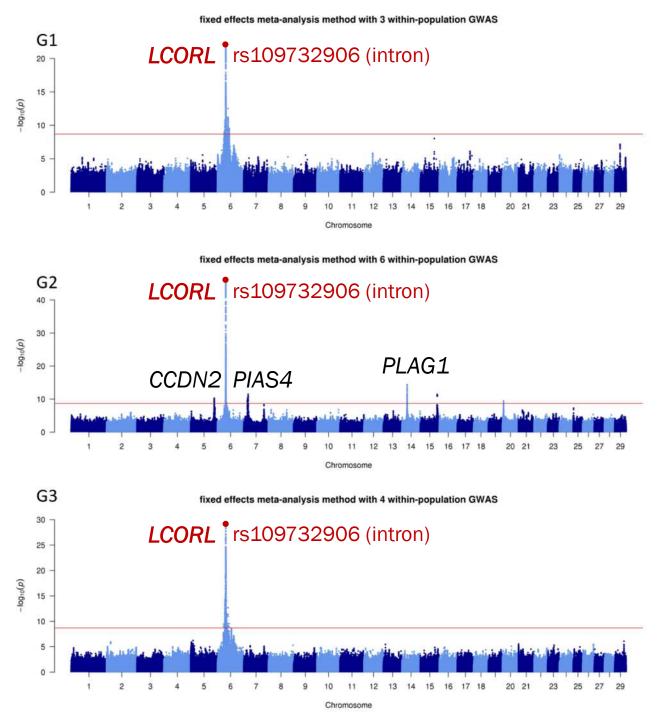
Confidence Intervals

MA = 77 variants / 605 kb GWAS = 218 variants / 1810 kb

Marie-Pierre SANCHEZ 15 February 2023

INRA@

Growth MA – results


Growth traits

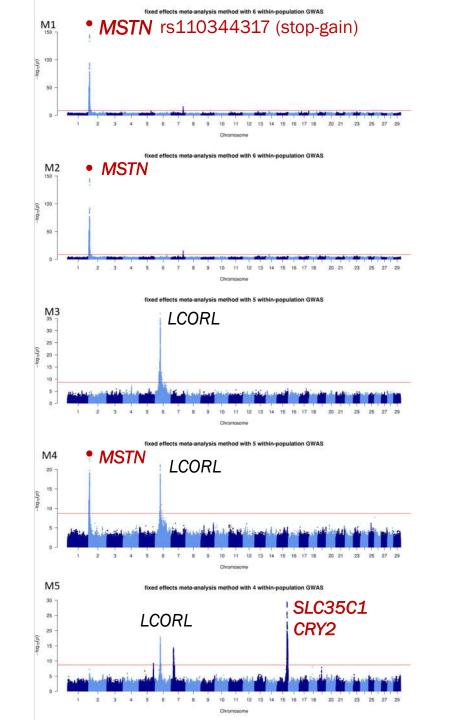
QTL with the most significant effects common to the 3 growth MA \Rightarrow **BTA6** \approx 37 Mb

Variants in *LCORL* in all MA, not in GWAS Transcription factor regulating expression of other genes

+ QTL on BTA 5, 7, 14, 15, and 20

INRAO Marie-Pierre SANCHEZ 15 February 2023

Morphology MA – results


Morphology traits

- QTL with the most significant effects
- \Rightarrow **BTA2** (*MSTN*)
- \Rightarrow BTA6 (LCORL)
- \Rightarrow BTA15 (SLC35C1, CRY2)

MSTN encodes myostatin, with known mutations responsible for muscular hypertrophy

+ QTL on BTA 7, and 14

Marie-Pierre SANCHEZ

Carcass MA – results

C1

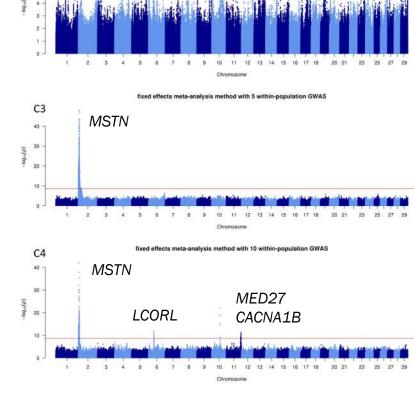
MSTN

a 3

(a) 20 -

15 -

C2

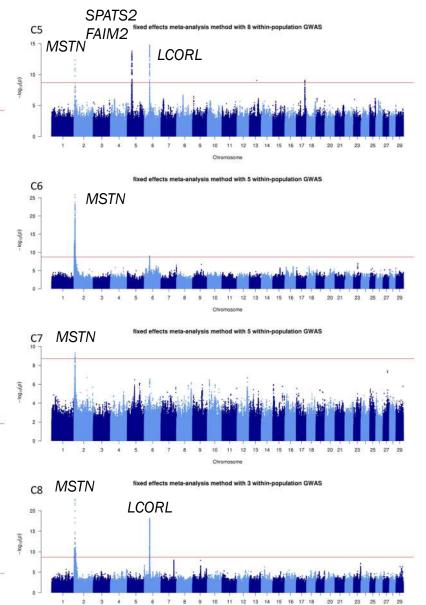

Carcass traits

37 QTL with the most significant effects

 \Rightarrow BTA2

 \Rightarrow BTA6

+ QTL on BTA 5, 10, 11, 13, 14, 17, and 20


fixed effects meta-analysis method with 7 within-population GWAS

ects meta-analysis method with 4 within-population GWA

PLAG1

ERGIC1

LCORL

Chromosome

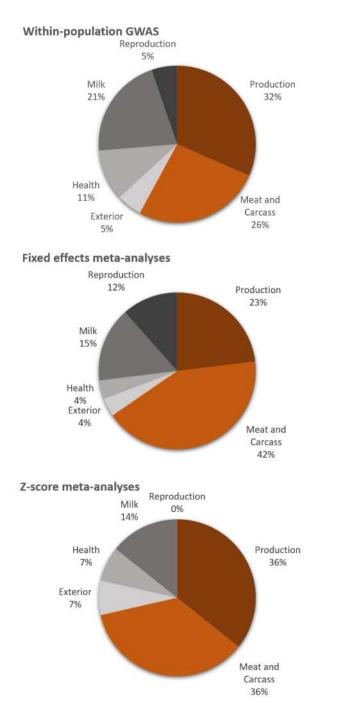
Marie-Pierre SANCHEZ 15 February 2023

INRA@

QTL enrichment analyses

Comparison with QTL referenced in CattleQTLdb

% of production, meat and carcass QTL detected \Rightarrow 58% in within-population GWAS \Rightarrow 65% in fixed effects MA


 \Rightarrow 72% in z-score MA

INRA@

Marie-Pierre SANCHEZ

15 February 2023

Enrichment of QTL related to the traits analyzed more pronounced in MA than in GWAS

Fixed Effects / z-score

A limited number of variants detected in MA that are cis-e/sQTL in CattleGTEx

Tissue	Total
Adipose	2/2
Blood	1/0
Embryo	1/0
Intramuscular_fat	1/1
Leukocyte	4/4
Liver	2/2
Lung	0/1
Lymph_node	4/1
Mammary	1/1
Mammary_L	1/1
Milk_cell	1/0
Monocytes	2/3
Muscle	5/3
Pituitary	0/1
Rumen	2/0
Spleen	5/2
Total	32/22

~ .		~ 7	- 1	
Cis	3-5	01	ГІ	

170 sQTL x tissue x MA x method combinations

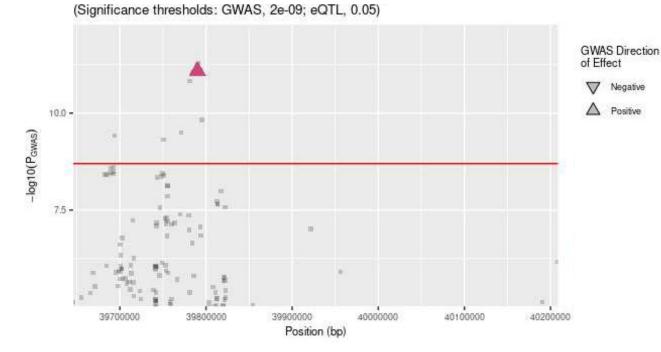
Adipose	11/
Blood	3/5
Embryo	2/0
Hypothalamus	4/2
Jejunum	4/0
Kidney	5/4
Liver	6/0
Lung	9/2
Lymph_node	3/7
Macrophage	6/4
Mammary	7/6
Mammary_L	2/7
Milk_cell	1/3
Monocytes	0/2
Muscle	4/8
Ovary	1/0
Oviduct	5/7
Pituitary	3/3
Rumen	4/4
Spleen	5/5
Testis	4/4
Uterus	2/0
Total	91/

Tissue/MA

Total

Tissues in which e/sQTL colocalizing with MA results related to the traits analyzed

Cis-eQTL

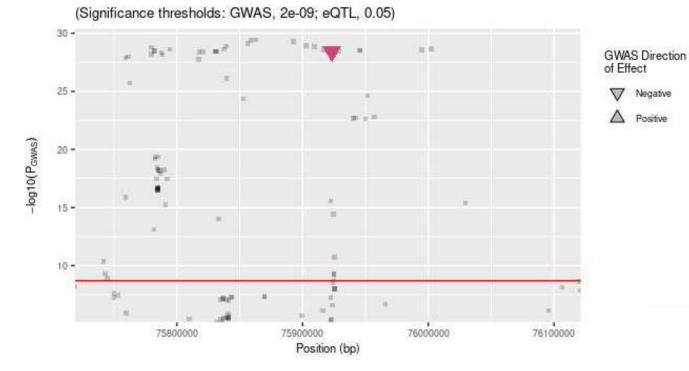

54 eQTL x tissue x MA x method combinations

 	-		-
М	D	л	C
	N		<

Marie-Pierre SANCHEZ 15 February 2023

Overlapping between QTL and cis e/sQTL

eQTpLot analysis for G1 and *SLIT2* MultiTissue analysis, eQTLs collapsed by minimum value


One of the TOP meta-GWAS variant is a ciseQTL regulating the expression of SLIT2

INRAO Marie-Pierre SANCHEZ 15 February 2023

Overlapping between QTL and cis e/sQTL

eQTpLot analysis for M5 and *MAPK8IP1* MultiTissue analysis, eQTLs collapsed by minimum value

Among a number of variants with the most significant effects, one is a cis-eQTL regulating the expression of MAPK8IP1

INRA© Marie-Pierre SANCHEZ 15 February 2023

Conclusions

With almost 55,000 animals from 15 populations of various breeds, this study is the first meta-GWAS of this scale dedicated to beef production

Value of meta-GWAS compared to within-population GWAS, in identifying:

- A larger number of QTL
- A smaller number of target variants within the QTL
- A more significant enrichment of meat, carcass, and meat production QTL

Large-scale meta-GWAS conducted at the sequence level, coupled with post-GWAS analyses, significantly improved the identification of genes and causal variants associated with beef production traits

BovReg *PARTNERS*

Thank you for your attention

www.bovregproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 815668 Disclaimer: the sole responsibility of this presentation lies with the authors. The Research Executive Agency is not responsible for any use that may be made of the information contained therein.

Marie-Pierre SANCHEZ 15 February 2023

INRA®