

# Isolation and Characterization of (primary) Bovine Luteal Cells

Arpna Sharma, Jens Vanselow and Doreen Becker (FBN)

**BovReg Final Conference - Brussels** (14-15 February 2024)



This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 815668 Disclaimer: the sole responsibility of this presentation lies with the authors. The Research Executive Agency is not responsible for any use that may be made of the information contained therein.

## **WP1** Isolation and Characterization of (primary) Bovine Luteal Cells

**BovReg WP1:** Development of Laboratory Tools and Resources **Task 1.1 Generation and Characterization of new bovine cell lines** 









In vitro passaging adversely affects the marker gene expression of luteal cell function

- Synthesis of P4 by luteal cells requires STAR, LHCGR and HSD3B1 as key functional proteins
- With passaging, the relative mRNA expression levels of STAR, HSD3B1 were significantly downregulated
- Higher passaged luteal cell looses
  STAR and LHCGR protein expression





BovReg

STAR: steroidogenic acute regulatory protein

BACT: β actin



 With passaging, the proportion of luteal cells in
 S-phase (replicative phase) is significantly reduced

 With passaging, cell proliferation is significantly delayed

#### Cell proliferation decreases at high passages

#### Luteal cell viability is unaffected by passage number

- Approx. 90% viable cells observed in primary, intermediate passage (p15) and late passage (p30) luteal cells
- Results suggests that proteins and pathways involved in cell survival might remain functional in long term passaged luteal cells







#### Expression of cytoskeleton proteins remain stable from early to late passaged luteal cells

- Cell cytoskeleton marker proteins vimentin and KRT-18 were co-expressed in luteal cells throughout the passaging
- Luteal cells structural integrity remains consistent irrespective of passage number



### Luteal cell transcriptome:

RNA sequencing revealed a total of 13,763 expressed genes in luteal cells

#### Functional enrichments (Top 500 expressed genes)

| )          | Biological Process (Gene Ontology)                             |                      |              |                      |
|------------|----------------------------------------------------------------|----------------------|--------------|----------------------|
| GD-term    | description                                                    | count in network     | + utrenativ  | false doublery rate  |
| 60,2000435 | Negative regulation of protein neddylation.                    | 3 af 4               | t 52         | 0.0120               |
| 60 1905323 | Telemenuse holoeruryme complex autientity                      | 3014                 | 1.52         | 0.0120               |
| CO:0044849 | Eatroim cycle                                                  | 3 of 4               | 1.52         | 0.0120               |
| 00.0010757 | Regulate regulation of plasminopen activation                  | 4uft.                | 1.42         | 0.0026               |
| 001103377  | Negative regulation of condutive stress instaced neuron intri- | 3 uf 3               | 1.42         | 0.0177               |
|            |                                                                |                      |              | (maxie)              |
| >          | Molecular Function (Gane Ontology)                             |                      |              |                      |
| GO-term    | descration                                                     | i postit in meteorik | a dranath    | false daussiery oth- |
| GO 1990948 | (Diguth) ligase inhibitor activity                             | 5 0 10               | 1.56         | 0.00023              |
| GO:0043532 | Angiustafin binding                                            | 3 uf 4               | 1.52         | 0.0151               |
| GC:0004858 | ProcoRagen-proline 4-doxygenasa activity                       | 3 11 5               | 1.42         | 0.02238              |
| GG10048407 | Platelet-derived growth factor binding                         | 5 uf 9               | 1.39         | 0.00024              |
| 60.0046930 | Proton-transporting ATP synthese activity, rotational mecha.   | 6 of 11              | 1.38         | 0.0003               |
|            |                                                                |                      |              | (move)               |
| >          | Callular Component (Gene Omology)                              |                      |              |                      |
| GO-mm      | dencontin                                                      | Count in outmany.    | + internativ | Taker stacsvery rate |
| 60.0034674 | Integrin alpha5-beta1 complex                                  | 2 of 2               | 1.64         | 0.0331               |
| GO 0005584 | Collagon type ) trimer                                         | 2 at 2               | 1.64         | 0.0331               |
| GO 0097513 | Myoun II flammi                                                | 3 uf 4               | 1.52         | 0.0054               |
| GO.0098556 | Oytoplaamic side of rough endoplasmic reticulum membrane       | # uf 6               | 1.47         | 0.00090              |
| GO.0030478 | Actin cap                                                      | 2 of 3               | 1.47         | 0.0491               |





#### Summary:

- *In vitro* passaging has adverse effect on long-term cultured luteal cells as they loose their signature marker genes (*STAR, LHCGR* and *HSD3B1*) essential for P4 synthesis
- Cell viability and structural integrity remains intact throughout subsequent passaging *in vitro*
- Repeatedly passaged to proliferate, the key functions of specialized luteal cells are either altered or diminished, which can potentially affect the experimental outcomes
- It is highly recommended to define and set the passage number while using cells in long-term culture experiments (especially in cell lines)





### **BovReg** *PARTNERS*



### Thank you for your attention

### www.bovregproject.eu



This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 815668

Disclaimer: the sole responsibility of this presentation lies with the authors. The Research Executive Agency is not responsible for any use that may be made of the information contained therein.