GWAS for feed intake and methane emission across cattle populations

Birgit Gredler-Grandl and co-authors

BovReg Final Conference, February 15th, 2024

Thank you to all co-authors (BovReg & gDMI)

P	UNIVERSITY	0 F
SEEF	ALBER	ГA

Coralia Manzanilla-Pech Zexi Cai Goutam Sahana

Sunduimijid Bolormaa Jennie Pryce

Yining Wang ChangXi Li Dan Hailemariam Graham Plastow

Noureddine Charfeddine

Praveen Chitneedi Christa Kuehn

Tatiana Chud Flavio Schenkel Christine Baes

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

Beatrix Villanueva Almudena Fernandez Oscar González-Recio

Daniel Fischer Teri Iso-Touru Martin Lidauer

Biaty Raymond Ghyslaine Schopen Yvette de Haas **Roel Veerkamp** Aniek Bouwman

- BovReg: Providing a catalogue of functionally active genomic features in cattle
- Key traits: Biological & environmental efficiency
 - \rightarrow Feed efficiency
 - \rightarrow Methane emission
- Large scale recording of methane & feed intake difficult
 - → size of reference populations for GWAS & genomic selection limited
 - \rightarrow accuracy is limited

https://hokofarmgroup.com

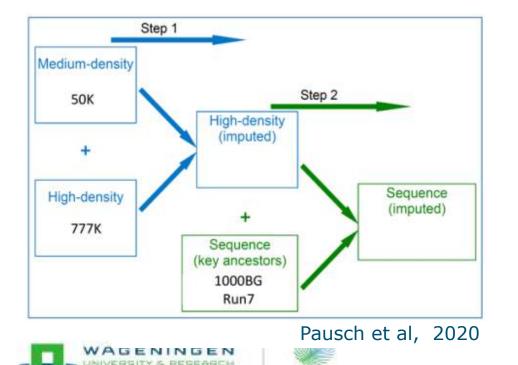
Objective

Combine resources across-countries to identify relevant genome regions related to **dry matter intake** (**DMI**) and **methane production** (**CH4 g/day**)

Meta-GWAS across dairy and beef cattle populations

Meta-GWAS for DMI and CH4 g/day

- Phenotypes recorded
- DMI
 - Feed bins
 - Dairy cows, beef cattle, dairyxbeef cross
 - Different lactation stages
- CH4:
 - GreenFeed, sniffer and SF6
 - Dairy cows and beef cattle
 - Different lactation stages



Meta-GWAS for DMI and CH4 g/day

UNDOW NOT B

Population	Dry n	natter intake	Methane production		
	Ν	N variants imp. $r^2 > 0.6$	Ν	N variants imp. $r^2 > 0.6$	
AU	495	17,158,878	495	17,158,878	
AgVIC	584	17,597,583	354	17,030,121	
FBN dairy	140	14,016,930			
FBN beef	253	16,057,514			
INIA	561	12,829,538	971	13,308,847	
LUKE	366	18,392,101			
UAL	7,552	30,381,524	602	28,483,478	
UoG	588	11,694,898	346	11,329,136	
WUR	2,565	17,817,916	460	13,489,734	

Animals and variants local GWAS			S	BoyReg		
Population	Dry m	Dry matter intake		Methane production		
	13,10	4 animals	3,22	8 animals		
AU AgVIC	584	17,597,583	448	17,030,121		
FBN dairy	140	14,016,930		_,,000,121		
FBN beef	253	16,057,514				
INIA	561	12,829,538	971	13,308,847		
LUKE	366	18,392,101				
UAL	7,552	30,381,524	602	28,483,478		
UoG	588	11,694,898	346	11,329,136		
WUR	2,565	17,817,916	460	13,489,734		

GWAS for CH4 g/day and DMI

Local GWAS (GCTA, Yang et al. 2011) • by each partner

 $y=1\mu+xb+u+e$

- Phenotypes: de-regressed BV, direct phenotypes corrected for fixed effects
- Local GWAS summary statistics to WUR

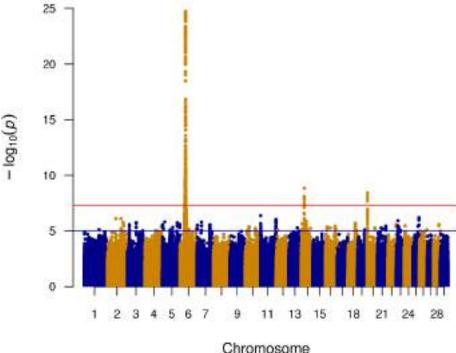
Meta-GWAS for CH4 g/day and DMI @WUR

- Standardisation of variant effects by genetic standard deviation
- Variants effect size +/- 5 s.d.
- MAF >0.005
- Software METAL (Willer et al., 2010)
 - STDERR method
 - Genomic control
- Scenarios: ALL HOL BEEF

10

Gene-based GWAS @WUR

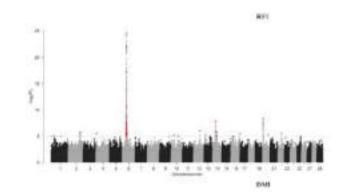
- GCTA-fastBAT (Bakshi et al., 2016)
- Genes downloaded from Ensemble (cow genes ARS-UCD1.2)
- LD calculation based on 1000 Bull Genomes data
- Bonferroni corrected sign. level PfastBAT < $1.92 \times 10-6$ (0.05/26,101)
- Number of genes tested per trait and scenario


	DMI			CH4	
ALL	HOL	BEEF	ALL	HOL	BEEF
26,056	26,083	26,067	26,045	26,054	25,971

Results Meta-GWAS DMI - ALL

BMC Genomics

13,104 animals 25,617,425 variants



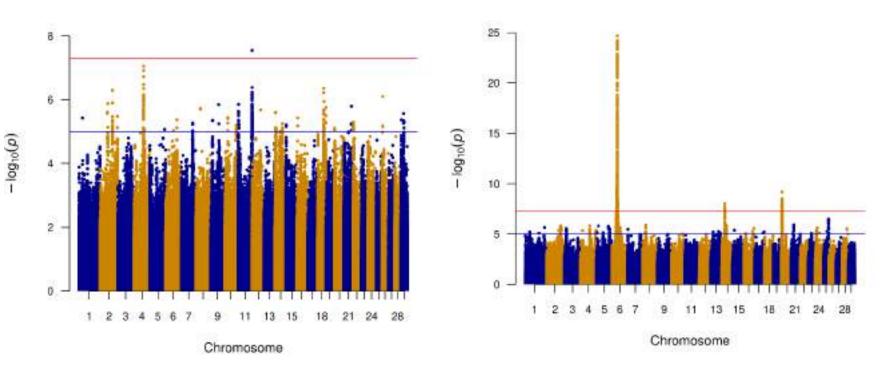
2hang et al. BMC Generality 08029 21:06 https://doi.org/10.1180/12864-018-6360-1

RESEARCH ARTICLE

Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits

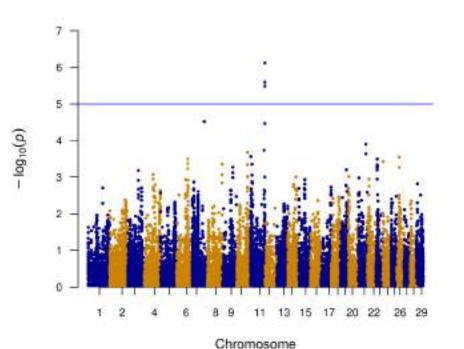
Feng Zhang^{11,144}, Vining Wang¹², Robert Mukibi², Luhong Chen¹², Michael Viniky², Graham Pitatow², John Bisarab³, Paul Stothard² and Changel U^{1,4}

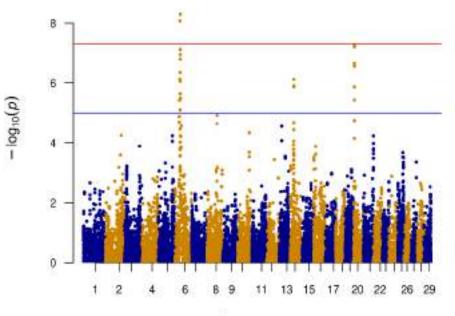
Open Access



Results Meta-GWAS DMI – HOL & BEEF

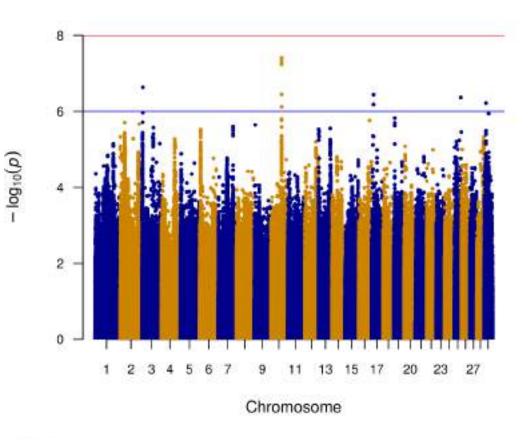
HOL 4,933 animals 19,457,738 variants


BEEF 7,805 animals 22,646,101 variants


Results genebased GWAS DMI – HOL & BEEF

HOL 26,083 genes

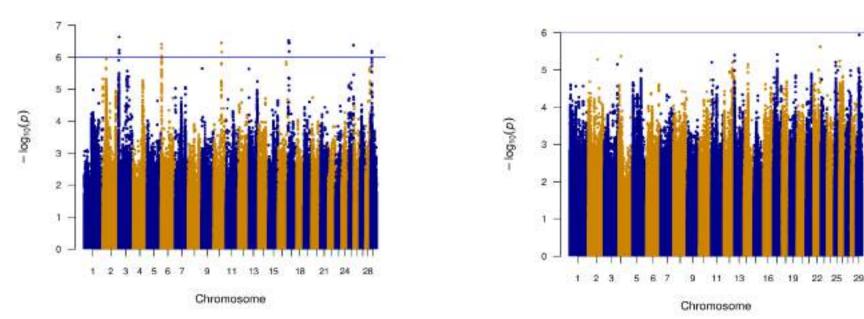
BEEF 26,067 genes



Chromosome

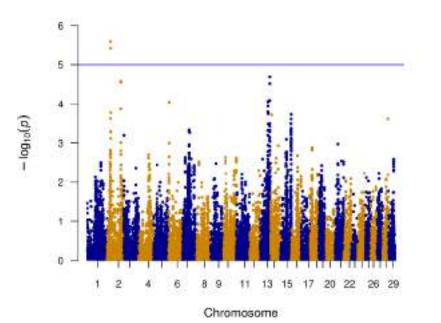
Results Meta-GWAS CH4 - ALL

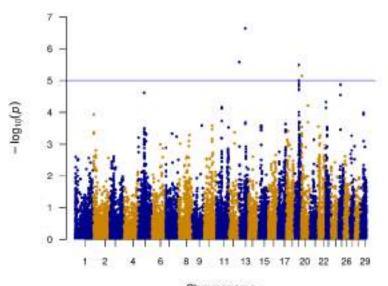
3,228 animals 22,596,906 variants



Results Meta-GWAS CH4 - HOL & BEEF

HOL 2,626 animals 18,055,312 variants


BEEF 602 animals 18,264,282 variants


Results genebased GWAS CH4 – HOL & BEEF

HOL 26,054 genes

BEEF 25,971 genes

Chromosome

- Dry matter intake and methane emission complex traits
- Dry matter intake:
 - Confirmed QTL for dry matter intake in beef
 - No clear candidates in dairy breeds
 - \rightarrow WP7: genomic prediction
- Methane emission
 - No clear candidates
- Challenge: heterogeneous data sets across-county
 - trait definition for DMI and CH4
 - Recording techniques

Acknowledgments

The BovReg consortium

This work is carried out within the BovReg project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815668.

Disclaimer: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them

BovReg *PARTNERS*

Thank you for your attention

www.bovregproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 815668

AGENINGEN

Disclaimer: the sole responsibility of this presentation lies with the authors. The Research Executive Agency is not responsible for any use that may be made of the information contained therein.