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Outline



 WGS: millions of variants  pinpoint causal variants affecting traits of interest

 Key traits: biological efficiency, e.g. feed efficiency

 BovReg: catalogue of functionally active genomic features (GF) in cattle

 Functional GF  SNP prioritization  Biology-driven genomic predictions 

 AIM: Validation of within- and across-breed biology-driven genomic 

predictions using genomic features for dry matter intake (feed efficiency)

1. Biology-driven genomic predictions



2. Data available for genomic predictions

NLD CAN

Breed Holstein Beef crosses

Dependent variable DRP on DMI Pre-corrected DMI

n. animals DMI & geno
(training - validation)

~3k
(2.2k and 850)

~5.5k
(4k and 1.5k)

 forward-in-time validation (SE via bootstrapping): accuracy and bias

 50k to imputed WGS (Beagle)  prioritize variants based on GF



2. Genomic features used

GF Traits / Tissues

QTL
(WP4)

Meat quality, Growth, Milk production, Morphology, 
Fertility, Health, Feed efficiency, Methane 

eQTL
(WP4)

(Gene, Transcript, Splice)

Jejunum, Blood, Liver, Mammary Gland,
Adipose, Muscle, Milk, Rumen

ATAC-seq
(WP2)

From GC Moreira et al., EAAP #939



2. Selection of genomic features

Clumping

Select GF group
(across traits/tissues)

Exclude variants in 50K &
not in within-country WGS

GF mapped to 1000G for all traits/tissues
position/intervals & p-value 

Variants list for selected GF group

SNPs as GF layer for GP

Extract bi-allelic variants
from within-country WGS 

vcftools/Plink

Plink



• NextGP.jl 1

• Base 50K: SNPBLUP (BayesC0) common variance across SNPs

• Additional GF layer: SNPBLUP or Bayesian (2 mixture model – no advantage)

• QTL, eQTL, ATAC  Multi-GF: overlapping GF (in NLD: 57% within ATAC), 

BayesRCπ (2 classes)

3. Scenarios and software

Scenario NLD CAN

50K 48K 46K
50K + QTL 48K +   5,416 46K +   4,222

50K + eQTL 48K + 12,401 46K + 11,884
50K + (QTL, eQTL, ATAC) 48K + 17,796 46K + 16,089

1 https://github.com/datasciencetoolkit/NextGP.jl 

https://github.com/datasciencetoolkit/NextGP.jl


4. Results – NLD: prediction accuracy

• SE: ±0.03

• No impact on dispersion (slope = 0.68 for 50k)

+1%-23% -11% 0% 0%

0.429

0.329

0.435

0.383
0.427 0.429

0.00

0.10

0.20

0.30

0.40

0.50

50K QTL 50K + QTL eQTL 50K + eQTL 50k + multi-
GF

50K QTL 50K + QTL eQTL 50K + eQTL 50K + 
Multi GF



• SE between ±0.02 and ±0.03

• Similar pattern for dispersion (slope = 0.56 for 50k)
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4. Results – CAN: prediction accuracy
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5. Investigating QTL effects in CAN

ALL  
10,539 animals
Beef, Holstein, Finnish Red 
~30M variants

HOL 
2,368 animals
Only Holstein
~20M variants

Zhang et al. 2020, BMC genomics

BEEF 
7,805 animals
Only Beef
~28M variants

Gredler-Grandl et al. 2022, WCGALP

chr 6, 14, 20CAN data filter SNPs with 2pqα2 ≥ 0.0001
chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
count 1 16 6 0 19 21 0 0 1 1 2 0 0 30 6 3 2 1 2 13 0 0 0 2 1 0 1 0 1



6. Across-breed genomic predictions

Scenario
Number of SNPs 

overlapped
Prediction 
accuracy

50K only 46K 0.00

QTL only 2,431 -0.02

eQTL only 11,505 0.00

50K + QTL 46K + 2,431 -0.02
50K + eQTL 46K + 11,505 0.00

Next: multi-breed NLD-CAN

SNP effects from NLD data, prediction on CAN data



Different scenarios implemented using ATAC-seq narrow peaks for selected tissues
Scenario Description SNPs

ATAC_ratio Top 10K variants from narrow peaks ratio (overlaps selected/ 
total tissues)
+ adjacent SNPs (200Kb) 

210,919  19,523
(LD pruning)

ATAC_housekeep Top 10K variants that overlaps across all narrow peaks 
("housekeeping" set)

10,000

ATAC_random Random selection 3,318

ATAC_weights Higher weights on less frequent variants (e.g., QTLs) 390

7. Use of narrow-peaks ATAC-seq



• SNPBLUP models
• Randomly selected variants gave same or higher accuracy than ATAC-seq scenarios (# SNPs)
• ATAC-seq modelled as additional SNP layer  model narrow-peaks as different layers into 

NextGP annotation matrix
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8. BayesLV (using p-value in GF layer)
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 Inclusion of Genomic Features could increase genomic prediction 

accuracies for Dry Matter Intake

 Results may vary across datasets 

 No advantage using Bayesian (2 mixture model) over SNPBLUP for GF

9. Conclusions
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