Biology-driven WGS genomic predictions for feed efficiency within and across-breeds

Renzo Bonifazi, **Marzieh Heidaritabar**, AC Bouwman, LD Barlow, L Chen, P Stothard, J Basarab, C Li, G Plastow, E. Karaman, G.C.M. Moreira, the BovReg consortium, B Gredler-Grandl

Outline

- 1. Background and aim
- 2. Data available and usage of BovReg genomic features
- 3. Scenarios
- 4. Within-breed results: NLD and CAN
- 5. Investigating QTLs
- 6. Across-breed results
- 7. Usage of ATAC-seq narrow peaks
- 8. BayesLV models

9. Conclusions

1. Biology-driven genomic predictions

- WGS: millions of variants → pinpoint **causal variants** affecting traits of interest
- Key traits: biological efficiency, e.g. feed efficiency
- BovReg: catalogue of functionally active genomic features (GF) in cattle
- Functional GF → SNP prioritization → Biology-driven genomic predictions
- <u>AIM</u>: Validation of within- and across-breed **biology-driven genomic**

predictions using genomic features for dry matter intake (feed efficiency)

2. Data available for genomic predictions

	NLD	CAN 🌞
Breed	Holstein	Beef crosses
Dependent variable	DRP on DMI	Pre-corrected DMI
n. animals DMI & geno (training - validation)	~3k (2.2k and 850)	~5.5k (4k and 1.5k)

forward-in-time validation (SE via bootstrapping): accuracy and bias

■ 50k to imputed WGS (Beagle) → prioritize variants based on GF

2. Genomic features used

	GF	Traits / Tissues			
	QTL (WP4)	Meat quality, Growth, Milk production, Morphology, Fertility, Health, Feed efficiency, Methane			
_	eQTL (WP4)	(Gene, Transcript, Splice) Jejunum, Blood, Liver, Mammary Gland, Adipose, Muscle, Milk, Rumen			
	ATAC-seq (WP2) GC Moreira et al., EAAP #939	Image: Second			

2. Selection of genomic features

3. Scenarios and software

Scenario	NLD	CAN 🌞
50K	48K	46K
50K + QTL	48K + 5,416	46K + 4,222
50K + eQTL	48K + 12,401	46K + 11,884
50K + (QTL, eQTL, ATAC)	48K + 17,796	46K + 16,089

- NextGP.jl¹
- Base 50K: SNPBLUP (BayesC₀) common variance across SNPs
- Additional GF layer: SNPBLUP or Bayesian (2 mixture model no advantage)
- QTL, eQTL, ATAC \rightarrow Multi-GF: overlapping GF (in NLD: 57% within ATAC), BayesRC π (2 classes)

UNIVERSITY & RESEARCH

¹ <u>https://github.com/datasciencetoolkit/NextGP.jl</u>

• SE: ±0.03

No impact on dispersion (slope = 0.68 for 50k)

• SE between ± 0.02 and ± 0.03

Similar pattern for dispersion (slope = 0.56 for 50k)

5. Investigating QTL effects in CAN

6. Across-breed genomic predictions

SNP effects from NLD data, prediction on CAN data

Scenario	Number of SNPs overlapped	Prediction accuracy
50K only	46K	0.00
QTL only	2,431	-0.02
eQTL only	11,505	0.00
50K + QTL	46K + 2,431	-0.02
50K + eQTL	46K + 11,505	0.00

Next: multi-breed NLD-CAN

7. Use of narrow-peaks ATAC-seq

Different scenarios implemented using ATAC-seq narrow peaks for selected tissues

Scenario	Description	SNPs
ATAC_ratio	Top 10K variants from narrow peaks ratio (overlaps selected/ total tissues) + adjacent SNPs (200Kb)	210,919 → 19,523 (LD pruning)
ATAC_housekeep	Top 10K variants that overlaps across all narrow peaks (" housekeeping" set)	10,000
ATAC_random	Random selection	3,318
ATAC_weights	Higher weights on less frequent variants (e.g., QTLs)	390

7. Narrow-peaks ATAC-seq results

- SNPBLUP models
- Randomly selected variants gave same or higher accuracy than ATAC-seq scenarios (# SNPs)
- ATAC-seq modelled as additional SNP layer → model narrow-peaks as different layers into NextGP annotation matrix

8. BayesLV (using p-value in GF layer)

9. Conclusions

- Inclusion of Genomic Features could increase genomic prediction
 - accuracies for Dry Matter Intake
- Results may vary across datasets
- No advantage using Bayesian (2 mixture model) over SNPBLUP for GF

Acknowledgments

The BovReg consortium

This work is carried out within the BovReg project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815668.

Disclaimer: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Thank you for your attention

www.bovregproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 815668

UNIVERSITY OF

WAGENINGEN

UNIVERSITY & RESEARCH

Disclaimer: the sole responsibility of this presentation lies with the authors. The Research Executive Agency is not responsible for any use that may be made of the information contained therein.