

**Fergal Martin** 

**Eukaryotic Annotation Team Leader** 



# What is a pangenome?



## What is a pangenome?

- A group of organisms generally contains much more genomic sequence than an individual genome
- A pangenome can be thought of as the collection of genomic sequences that describe the genomes in a particular group
- In eukaryotes this is often though of at the species or population level
- The concept originated in prokaryotes and encompassed both vertical and horizontal transmission



## First sight of a pangenome

- In the early 2000s Tettelin et al. realised only 80% the genes of an individual strain of *S. agalactiae* were present other *S. agalactiae* strains
- No single genome could represent *S. agalactiae*
- In fact, this is a general property of prokaryotes



\*Photo from Tettelin & Medini "The Pangenome"



#### **Giving structure to a pangenome**

- Without modelling the relationships between the sequences and structures, a pangenome is difficult to interpret
- These relationships are often presented as an alignment graph







## Why use a pangenome?

- A single reference genome is not adequate to give context to the variation seen across a population/species/clade
- Creates reference bias in downstream analyses
- Reference genomes are generally never perfect
- Even if perfect, some genes or structural features of genes may be entirely absent from the reference





# Landscape of Pangenomes

#### Landscape of pangenomes - Eukaryotic pangenomes

- Prokaryotic pangenomes are a natural by-product of how genetic information flows through prokaryotes
- Eukaryotic pangenomes are less mature, but significant effort on both method development and data generation are well underway
- The major drivers of eukaryotic pangenomes:
  - Human
  - Crop plants
  - Livestock
  - Models
- Current pangenome projects can vary from within a species, within a genus to across families



#### Landscape of pangenomes - Explicit versus implicit

- Projects such as Human Pangenome Reference Consortium (HPRC) and Pan-Oryza are examples of explicit pangenome efforts
- Other species/groups are implicit pangenome efforts, e.g. dog, pig, chicken
- Different implications, opportunities, many examples of both scenarios already



## Landscape of pangenomes - Building graphs

- The concept of a pangenome and pangenome alignment graphs are not the same thing, but heavily linked
- Many of the eukaryotic pangenome efforts have been centred around generating a Cactus alignment
- Not ideal for a species level pangenome
- Not scalable to a dense pangenome
- Efforts in human have looked to find alternative solutions





## Landscape of pangenomes - Building graphs

- Minigraph Cactus (Li, Paten):
  - Main analysis for the human pangenome was anchored on Minigraph Cactus
  - Minigraph will quickly model the graph between haplotypes
  - Requires a reference, which has implications
  - Avoids some of the issues of Cactus, which expects a species tree and makes decisions on indels based on it
  - Minigraph cannot model variation < 50bp, running Cactus after Minigraph solves this
- PGGB (Garrison):
  - Also developed as part of HPRC
  - All vs all, reference free approach
  - Output VCF for any genome included in the graph
  - Fast, lots of active development







## Landscape of pangenomes - Graph format

- Graph Fragment Assembly (.gfa) is becoming the canonical graph format
- Adoption in Darwin Tree of Life (complex organelle genomes) and HPRC
- ENA has been working closely with both projects in terms of accepting GFA files

| Н | VN:Z:1. | VN:Z:1.0 |      |       |    |  |  |
|---|---------|----------|------|-------|----|--|--|
| S | 11      | ACCTT    |      |       |    |  |  |
| S | 12      | TCAAGG   |      |       |    |  |  |
| S | 13      | CTTGATT  |      |       |    |  |  |
| L | 11      | +        | 12   | _     | 4M |  |  |
| L | 12      | -        | 13   | +     | 5M |  |  |
| L | 11      | +        | 13   | +     | ЗM |  |  |
| Р | 14      | 11+,12-  | ,13+ | 4M,5M |    |  |  |





## Landscape of pangenomes - Tools

- Tool development still early days in the eukaryotic space
- Lack of intuitive tooling is a significant barrier to transition to pangenomics
- Graph aware tools would provide scalability of analysis
- Not needing to linearise would help storage footprint
- Giraffe, which is a graph-aware short read mapper is an early success





Sirén et al., 2021. PMID: 34914532



## Landscape of pangenomes - Users and drivers

- Initial users limited:
  - People who are interested in pangenomes
  - Researchers where the pangenome can answer complex biological questions
- Longer term, clinicians and breeders
- Two clear high impact use cases
  - The human pangenome allows more accurate interpretation of clinical data leading to better outcomes
  - The pangenome of crops/livestock leading to better breeding strategies and greater food security



## Landscape of pangenomes - Users and drivers

- Example clinical use case:
  - A clinician has some data relating to a patient's genome
  - These data are searched against the reference pangenome
  - The most appropriate reference path is identified
  - The reference pangenome is layered with functional information to a level we see on GRCh38 now
  - Clinician can confidently and seamlessly use these data to draw conclusion in a manner similar or easier than if they were to perform this on GRCh37/38
  - The use of less biased, more targeted data leads to improved outcomes for human health









#### **Annotating a pangenome - approaches**

- Most straightforward approach is reference based/biased
- Ground up annotations on individual breeds/haplotypes useful but expensive and more likely to be incomplete
- Best of both worlds approach involves mapping from a well annotated reference while supplementing with targeted transcriptomic and comparative annotation



## Annotating a pangenome - primary mapping





## Annotating a pangenome - secondary mapping

Remap canonical transcripts across target genome



Add non-conflicting annotations to set





## **Annotating a pangenome - difficulties**

- Capturing true novelty
- Assessing what change means
- Gene clusters and CNVs





#### The Human Pangenome Refence Consortium



## The Human Pangenome Reference Consortium

- An effort to build a draft human pangenome reference
- Currently includes the high-quality genomes 47 individuals
- All genomes are fully phased, diploid assemblies
- The start of addressing the need for better representation of genetic diversity



gorithm behaviou

autism research

next-generation display



## A Draft Pangenome

- Several draft pangenome graphs were constructed
- Minigraph-Cactus approach current best in class
- Choice of GRCh38 versus CHM13v2 as reference has some effect mapability to the graph
- ~22M bubbles represent ~20M SNPs, 6.8M indels, ~400K larger SVs
- Significant CNVs in genes related to human health





## **HPRC Annotation Results**

- CHM13v2.0 (T2T + Y) shows highest mapping score
- Higher mapping scores for protein-coding genes/transcripts
- Pseudogenes least mappable for both biological and technical reasons
- Gene clusters of paralogous genes cause most issues







#### **EMBL-EBI**

## **HPRC** future directions

- Remainder of phase 1 will go from 47 to 350 individuals (700 haplotypes)
- Phase 2 will add another 200 individuals focusing on genetic diversity in US populations
- An effort to try and push for T2T quality for each haplotype
- Stablilise the pangenome to help with data migration
- High level of interaction with key projects such as GENCODE



#### **Pangenome Annotation Resources**



## The Eukaryotic Annotation Team

• **Focus:** providing genome annotation and comparative genomics resources for eukaryotes

#### • Major resources:

- GENCODE gene set for human and mouse
- Automated gene sets for other eukaryotes
- Repeat libraries and annotations
- Homologies and gene trees
- Whole genome alignments

#### Areas of focus:

- High quality, expansive resources for popular reference species and pangenomes
- Scalable support for global biodiversity initiatives





#### Ensembl



## **Ensembl and Pangenomes**

- Leading annotation efforts for the Human Pangenome Reference Consortium
- Looking at breeds, strains, cultivars, cell lines and haplotypes
- Major area of interest for livestock, agriculture and aquaculture
- Examples include
  - ~20 pigs
  - ~20 sheep
  - 5 chickens
  - ~ 15 medaka
  - 99 human





## **HPRC Data Availability**

- Annotated genomes for the 94 haplotypes and CHM13v2.0 assembly can be found on Ensembl Rapid Release
- <u>https://rapid.ensembl.org</u>
- A dedicated HPRC Ensembl project page
- <u>https://projects.ensembl.org/hprc</u>

| Name                                                                                                         | CCDC141-0 (H                                            | GNC Symbol)         |                   |                                 |                                   |                              |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------|-------------------|---------------------------------|-----------------------------------|------------------------------|--|
| anne<br>Taoamhl unrelon                                                                                      |                                                         | Give Symboly        |                   |                                 |                                   |                              |  |
| Crisemol version                                                                                             | ENSG04960057620.1                                       |                     |                   |                                 |                                   |                              |  |
| aene type                                                                                                    | Protein coding                                          |                     |                   |                                 |                                   |                              |  |
| Go to Reg                                                                                                    | ion in Detail for more tracks a                         | nd navigation optic | ons (e.g. zoomin  | g)                              |                                   |                              |  |
| Add/remove tracks                                                                                            | 🚰 Custom tracks   < Share                               | 🕀 Resize image      | Export image      | Seset config                    | uration   👼 Reset track ere       | ser                          |  |
|                                                                                                              |                                                         |                     | 240.36 ki         | b                               |                                   | forward strand               |  |
| Genes (Ensembl)                                                                                              | 39.25Mb<br>P1<br>ENST04960228308 ><br>protein coding    | 39.30Mb             | +-+-              | 39.35Mb                         | 39.40Mb                           | 39.45<br>ENST049<br>processe |  |
|                                                                                                              | ENST04960228305 ><br>protein coding                     |                     | + +               | +++                             |                                   | ****                         |  |
|                                                                                                              | INST04960228309 > protein coding                        |                     | + +               | ++                              |                                   | I<br>ENSTO<br>SNRN/          |  |
|                                                                                                              |                                                         |                     |                   | ENST04960228<br>processed trans | INST04960228307<br>protein coding | > Internet                   |  |
| Contigs                                                                                                      |                                                         |                     | JAHAOV810000      | 003 1->                         |                                   |                              |  |
| Ensemble Human<br>Human Pangenome Ref<br>Tawarös A<br>Tawarös A<br>Reference of<br>Humas Genome<br>Diversity | Ensertal Ensertal Generous   Biog                       |                     |                   |                                 |                                   |                              |  |
| The Human Pangenomi<br>global genomic diversit                                                               | <i>⊒I</i><br><u>e Reference Consortium</u> aims t<br>y. | o sequence 350 ind  | ividuals, produci | ng a pangenome (                | of 700 haplotypes to bette        | r represent                  |  |
| Ensembl is a partner in<br>GRCh38.                                                                           | the Human Pangenome Refer                               | ence Consortium an  | d have produced   | l annotation of the             | e human assemblies via pr         | ojection from                |  |
|                                                                                                              |                                                         |                     |                   |                                 |                                   |                              |  |

| GACIDO.               |                       |                            |            |          |             |            |                   |
|-----------------------|-----------------------|----------------------------|------------|----------|-------------|------------|-------------------|
| Assembly name         | Assembly<br>accession | Assembly<br>submitted by   | Annotation | Proteins | Transcripts | Other Data | View in Browser   |
| T2T-CHM13v2.0         | GCA_009914755.4       | T2T Consortium             | GTF, GFF3  | FASTA    | FASTA       | FTP dumps  | rapid.ensembl.org |
| HG02257.pri.mat.f1_v2 | GCA_018466845.1       | UCSC Genomics<br>Institute | GTF. GFF3  | EASTA    | FASTA       | FIP dumps  | rapid.ensembl.org |
| HG01258.prl.mat.f1_v2 | GCA_018469405.1       | UCSC Genomics<br>Institute | GTF, GFF3  | FASTA    | FASTA       | ETP. dumps | rapid.ensembl.org |



#### HPRC Data Availability - beta.ensembl.org





#### HPRC Data Availability - beta.ensembl.org

| The set a CEMBLEB                                        | Genome data & annotation                                     |
|----------------------------------------------------------|--------------------------------------------------------------|
| २ 🗞 🗾 😏 🛃 ?                                              | About the ENSEMBL project                                    |
| Species Selector<br>human T2T-CHM13v2.0 human GRCK38.p14 | Find a Gene Q Select a tab to see a Species home page Help ? |
| Find a species                                           |                                                              |
| Common or scientific name (2) Find                       |                                                              |
|                                                          |                                                              |
|                                                          |                                                              |
|                                                          |                                                              |
| Pont for                                                 |                                                              |
|                                                          |                                                              |
| 🕍 🕰 🏧 🌠 💭 🚅                                              | , 🔼 🥂 🧏 🍇 🐹 🚎                                                |
| 🐔 💓 🔍 🛒 🌲 🍝 ≽                                            | S 🔳 🔏 🚗 🦉 🛕                                                  |
| ビ 🗻 🕷 🕸 🕺 🎋 🐧 🚵 👔                                        |                                                              |



#### HPRC Data Availability - beta.ensembl.org

| 🕋 ENSEMBL Beta 📧    | EMBL-EBI                                            |                             |                                                        |        |                    |          | Genome data & annotation         |
|---------------------|-----------------------------------------------------|-----------------------------|--------------------------------------------------------|--------|--------------------|----------|----------------------------------|
| ۹ 🔹 🛛               | ۵ 🗲                                                 | ?                           |                                                        |        |                    |          | About the ENSEMBL project        |
| Entity viewer       |                                                     |                             |                                                        |        |                    |          |                                  |
| human T2T-CHM13v2.0 | human GRCh38.p14                                    |                             |                                                        |        |                    |          | Change Help 🕐 📭                  |
| Gene ZNF277ENSG052  | 20053036.1 Biotype protein_                         | coding forward strand       | 7:113,525,002-113,662,218                              |        |                    |          | Overview External references     |
| 5'                  | 6                                                   |                             |                                                        | 3'     | forward strand     | 5        | ZNF277 ENSG05220053036.1         |
| ENSG05220053036.1   |                                                     |                             |                                                        |        | 7 transcripts View |          | Geneiname                        |
| bp 1                |                                                     |                             | 109,000                                                | 137,   | 217                | Q        | zinc finger protein 277          |
|                     |                                                     |                             |                                                        |        |                    |          | :parent_gene_display_xref=ZNF277 |
| Filter & sort 👻     | Transcripts Gene function                           | Gene relationships          |                                                        |        |                    |          | Support                          |
|                     |                                                     |                             |                                                        |        | Transcript ID      | 1        | NRIF4, ZNF277P                   |
| Franklaundal 🙆      |                                                     |                             |                                                        |        |                    | 1.23     | Attributes                       |
| Ensemblicanonical 🥨 |                                                     |                             |                                                        |        | ENST(/5220/08057-1 | <b>T</b> | Biotype protein_coding           |
|                     | Biotype protein_coding<br>7:113,525.002-113,662,218 | 450 aa<br>ENSP05220092141 1 | Combined exon length 2,580 bp<br>Coding exons 12 of 12 |        | View in 🔀          |          | Find a same O                    |
|                     |                                                     |                             |                                                        |        |                    |          | Fillu agene                      |
|                     |                                                     |                             |                                                        |        |                    |          | Function                         |
|                     |                                                     |                             |                                                        |        |                    |          |                                  |
|                     |                                                     |                             |                                                        | -<br>- |                    |          | Publications                     |
|                     |                                                     |                             |                                                        |        |                    |          | C Europe PMC                     |



## Summary

- Huge growth in terms of pangenome efforts
- Human, primarily via the HPRC, has led to a largescale effort to build a reference pangenome and associated tools
- Already many efforts underway in the agricultural space on pangenomes
- Still very early days for clear use cases, workflows, tools and visualisations
- Adoption of pangenomics will take many more years, needs stable pangenomes, tools and clear use cases



### Acknowledgements

- Everyone in the Eukaryotic Annotation Team and Ensembl
- Project partners on HPRC, especially Benedict and the team at UCSC





#### **Questions?**



## Landscape of pangenomes - Users and drivers

- Example agricultural use case:
  - A breeder has a set of variants associated with desirable traits such as drought/disease resistance or yield
  - Breeder assesses paths for breeds/haplotypes within the pangenome that best fit the traits under consideration
  - Creates a strategy for breeding/cross breeding that captures more of these desired traits in the offspring



